精英家教網 > 高中數學 > 題目詳情
已知為常數,函數有兩個極值點,則(  )
A.B.
C.D.
D

試題分析:求導得:.易得在點P(1,0)處的切線為.當時,直線與曲線交于不同兩點(如下圖),且

時,單調遞減,當時,單調遞增,
是極小值,是極大值.
.
.
,則,所以單調遞增,,即.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,,其中,且.
⑴當時,求函數的最大值;
⑵求函數的單調區間;
⑶設函數若對任意給定的非零實數,存在非零實數),使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數=。
(1)當時,求函數的單調增區間;
(2)求函數在區間上的最小值;
(3)在(1)的條件下,設=+,
求證:  (),參考數據:。(13分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)時,求處的切線方程;
(Ⅱ)若對任意的恒成立,求實數的取值范圍;
(Ⅲ)當時,設函數,若,求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數據:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,函數
(I)試求f(x)的單調區間。
(II)若f(x)在區間上是單調遞增函數,試求實數a的取值范圍:
(III)設數列是公差為1.首項為l的等差數列,數列的前n項和為,求證:當時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數其中為自然對數的底數, .
(1)設,求函數的最值;
(2)若對于任意的,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知都是定義在R上的函數,,,,則關于的方程有兩個不同實根的概率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的極大值為           .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视