【題目】已知點M,N分別是橢圓C:(
)的左頂點和上頂點,F為其右焦點,
,橢圓的離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設不過原點O的直線與橢圓C相交于A,B兩點,若直線OA,AB,OB的斜率成等比數列,求
面積的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由,結合橢圓的離心率求解即可.
(Ⅱ)直線的斜率存在且不為0.設直線
,
,
,
,
,聯立直線和橢圓,消去
可得,
,利用判別式以及韋達定理,通過
,
,
的斜率依次成等比數列,推出
,求出
,
,且
,然后求解三角形的面積的表達式,求解范圍即可.
解:(Ⅰ)設橢圓的半焦距為,由題可知
,
,
,
,則
,
又,
解得,
,
,
所以橢圓C的方程
(Ⅱ)由題意可知,直線l的斜率存在且不為0.
故可設直線,
,
,
聯立直線和橢圓,消去y可得,
,
有題意可知,,
即,
且,
,
又直線OA,AB,OB的斜率依次成等比數列,所以,
將,
代入并整理得
,
因為,
,
,且
,
設d為點O到直線l的距離,則有,
,
所以,
所以面積的取值范圍為
科目:高中數學 來源: 題型:
【題目】如圖所示,直角梯形中,
,
,
,四邊形
為矩形,
.
(1)求證:平面平面
;
(2)在線段上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第七屆世界軍人運動會于2019年10月18日至2019年10月27日在中國武漢舉行,第七屆世界軍人運動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運會后我國舉辦的規模最大的國際體育盛會.經過激烈角逐,獎牌榜的前6名依次為中國俄羅斯巴西法國波蘭和德國.其中德國隊共有45名運動員獲得了獎牌,其中金牌10枚銀牌15枚銅牌20枚,某大學德語系同學利用分層抽樣的方式從德國隊獲獎選手中抽取9名獲獎代表.
(1)請問這9名獲獎代表中獲金牌銀牌銅牌的人數分別為多少人?
(2)從這9人中隨機抽取3人,記這3人中銀牌選手的人數為,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為緩解城市道路交通壓力,促進城市道路交通有序運轉,減少機動車尾氣排放對空氣質量的影響,西安市人民政府決定:自2019年3月18日至2020年3月13日在相關區域實施工作日機動車尾號限行交通管理措施.已知每輛機動車每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五輛車,每天至少有四輛車可以上路行駛.已知E車周四限行,B車昨天限行,從今天算起,A,C 兩輛車連續四天都能上路行駛,E車明天可以上路,由此可知下列推測一定正確的是( )
A.今天是周四B.今天是周六C.A車周三限行D.C車周五限行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,底面四邊形
為直角梯形,
,
,
為線段
上一點.
(1)若,則在線段
上是否存在點
,使得
平面
?若存在,請確定
點的位置;若不存在,請說明理由
(2)己知,若異面直線
與
成
角,二而角
的余弦值為
,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,已知曲線,將曲線
上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線
,又已知直線
(
是參數),且直線
與曲線
交于
兩點.
(I)求曲線的直角坐標方程,并說明它是什么曲線;
(II)設定點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了讓貧困地區的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據自身實際情況,只參與其中的某一項工作.相關統計數據如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數,寫出隨機變量
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com