【題目】如圖,三棱錐P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.
(1)證明:平面ACP⊥平面ABC;
(2)若E為棱PB與P不重合的點,且AE⊥CE,求AE與平面ABC所成的角的正弦值.
【答案】
(1)證明:∵∠ABP=∠CBP,AB=BP=BC.
∴△ABP≌△CBP.
∴AP=CP,
又△ACP是直角三角形,∴△ACP是等腰直角三角形,∠APC=90°.
取AC的中點O,連接OP,OB.
則OP⊥AC,OB⊥AC.
不妨設AC=2.
則OP=1,OB= ,BP=AB=2.
∴OP2+OB2=BP2=4,∴∠BOP=90°.
∴OP⊥OB.又OB∩AC=O.
∴OP⊥平面ABC.OP平面ACP.
∴平面ACP⊥平面ABC.
(2)解:在△ABP中,AE⊥BP,∴AE= =
.
可得BE= =
.
在平面BPO內:過點E作EF⊥OB,垂足為點F,則EF⊥平面ABC,連接AF.
則∠EAF是AE與平面ABC所成的角.
∴ ,可得EF=
=
.
∴sin∠EAF= =
.
【解析】(1)由△ABP≌△CBP.可得AP=CP,又△ACP是直角三角形,所以△ACP是等腰直角三角形,∠APC=90°.取AC的中點O,連接OP,OB.可得OP⊥AC,OB⊥AC.即OP2+OB2=BP2可推線面垂直,面面垂直。
(2)在△ABP中,AE⊥BP,可得AE,BE。在平面BPO內:過點E作EF⊥OB,垂足為點F,則EF⊥平面ABC,連接AF.可得∠EAF是AE與平面ABC所成的角。
【考點精析】本題主要考查了平面與平面垂直的判定和空間角的異面直線所成的角的相關知識點,需要掌握一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知點F(1,0),直線l:x=﹣1,直線l'垂直l于點P,線段PF的垂直平分線交l'于點Q.
(1)求點Q的軌跡方程C;
(2)過F做斜率為 的直線交C于A,B,過B作l平行線交C于D,求△ABD外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxsin( ﹣x).
(Ⅰ)求f( )及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在區間[﹣ ,
]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列{an}中,a3+a4=12,公差d=2,記數列{a2n﹣1}的前n項和為Sn .
(1)求Sn;
(2)設數列{ }的前n項和為Tn , 若a2 , a5 , am成等比數列,求Tm .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 在x1處取得極大值,在x2處取得極小值,滿足x1∈(﹣1,0),x2∈(0,1),則
的取值范圍是( 。
A.
B.(0,1)
C.
D.[1,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:x∈R,x2+x-1<0,則﹁p:x∈R,x2+x-1≥0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能 與韓國棋手李世石進行最后一輪較量,
獲得本場比賽勝利,最終人機大戰總比分定格
.人機大戰也引發全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據已知條件完成下面的列聯表,并據此資料你是否有 的把握認為“圍棋迷”與性別有關?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率,現在從該地區大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數為 。若每次抽取的結果是相互獨立的,求
的分布列,期望
和方差
.
附: ,其中
.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x),當x≥0時,f(x)=log3(x+1).若關于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集為A,函數f(x)在[-8,8]上的值域為B,若“x∈A”是“x∈B”的充分不必要條件,則實數a的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現從甲、乙兩個品牌共9個不同的空氣凈化器中選出3個分別測試A、B、C三項指標,若取出的3個空氣凈化器中既有甲品牌又有乙品牌的概率為 ,那么9個空氣凈化器中甲、乙品牌個數分布可能是( )
A.甲品牌1個,乙品牌8個
B.甲品牌2個,乙品牌7個
C.甲品牌3個,乙品牌6個
D.甲品牌4個,乙品牌5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com