【題目】如圖,一個角形海灣(常數
為銳角).擬用長度為
(
為常數)的圍網圍成一個養殖區,有以下兩種方案可供選擇:方案一:如圖1,圍成扇形養殖區
,其中
;方案二:如圖2,圍成三角形養殖區
,其中
.
(1)求方案一中養殖區的面積;
(2)求方案二中養殖區的最大面積(用表示);
(3)為使養殖區的面積最大,應選擇何種方案?并說明理由.
科目:高中數學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎,規定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動直線垂直于
軸,與橢圓
交于
兩點,點
在直線
上,
.
(1)求點的軌跡
的方程;
(2)直線與橢圓
相交于
,與曲線
相切于點
,
為坐標原點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率作了調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:
(1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調整后小明的實際收入比調整前增加了多少?
(2)某稅務部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:
先從收入在及
的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機變量
表示抽到作為宣講員的收入在
元的人數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是定義在R上的兩個周期函數,
的周期為4,
的周期為2,且
是奇函數.當
時,
,
,其中k>0.若在區間(0,9]上,關于x的方程
有8個不同的實數根,則k的取值范圍是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心為
,直線l過點
且與x軸不重合,l交圓
于C,D兩點,過
作
的平行線,交
于點E.設點E的軌跡為
.
(1)求的方程;
(2)直線與
相切于點M,
與兩坐標軸的交點為A與B,直線
經過點M且與
垂直,
與
的另一個交點為N,當
取得最小值時,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三個內角
所對的邊分別是
,若
.
(1)求角;
(2)若的外接圓半徑為2,求
周長的最大值.
【答案】(1) ;(2)
.
【解析】試題分析:(1)由正弦定理將邊角關系化為邊的關系,再根據余弦定理求角
,(2)先根據正弦定理求邊,用角表示周長,根據兩角和正弦公式以及配角公式化為基本三角函數,最后根據正弦函數性質求最大值.
試題解析:(1)由正弦定理得,
∴,∴
,即
因為,則
.
(2)由正弦定理
∴,
,
,
∴周長
∵,∴
∴當即
時
∴當時,
周長的最大值為
.
【題型】解答題
【結束】
18
【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: ,
,
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;(
的值精確到0.01)
(3)若規定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com