【題目】已知等差數列的首項為
,公差為
,等比數列
的首項為
,公比為
.
(Ⅰ)若數列的前
項和
,求
,
的值;
(Ⅱ)若,
,且
.
(i)求的值;
(ii)對于數列和
,滿足關系式
,
為常數,且
,求
的最大值.
科目:高中數學 來源: 題型:
【題目】衡陽市為增強市民的環境保護意識,面向全市征召義務宣傳志愿者,現從符合條件的志愿者中隨機抽取100名后按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,則應從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知點
,以原點為極點,
軸的正半軸為極軸建立坐標系,曲線
的極坐標方程為
,過點
作極坐標方程為
的直線的平行線
,分別交曲線
于
兩點.
(1)寫出曲線和直線
的直角坐標方程;
(2)若成等比數列,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】質檢部門對某工廠甲、乙兩個車間生產的12個零件質量進行檢測.甲、乙兩個車間的零件質量(單位:克)分布的莖葉圖如圖所示.零件質量不超過20克的為合格.
(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;
(2)質檢部門從甲車間8個零件中隨機抽取4件進行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;
(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用表示乙車間的零件個數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
、
是橢圓
的右頂點與上頂點,直線
與橢圓相交于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當四邊形面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了準確把握市場,做好產品計劃,特對某產品做了市場調查:先銷售該產品50天,統計發現每天的銷售量分布在
內,且銷售量
的分布頻率
.
(Ⅰ)求的值.
(Ⅱ)若銷售量大于等于80,則稱該日暢銷,其余為滯銷,根據是否暢銷從這50天中用分層抽樣的方法隨機抽取5天,再從這5天中隨機抽取2天,求這2天中恰有1天是暢銷日的概率(將頻率視為概率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個焦點與短軸的兩個端點是正三角形的三個頂點,點
在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設不過原點O且斜率為的直線l與橢圓E交于不同的兩點A,B,線段AB的中點為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的焦點
的坐標為
,
的坐標為
,且經過點
,
軸.
(1)求橢圓的方程;
(2)設過的直線
與橢圓
交于
兩不同點,在橢圓
上是否存在一點
,使四邊形
為平行四邊形?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com