【題目】已知數列的通項公式為
.求所有的正整數
,使得數列
的前
項能分成兩部分,這兩部分的和相等.
科目:高中數學 來源: 題型:
【題目】設,
是兩條不同的直線
,
,
是三個不同的平面,給出下列四個命題:(1)若
,
,那么
;(2)若
,
,
,那么
;(3)若
,
,那么
;(4)若
,
,則
,其中正確命題的序號是( )
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法:①越小,X與Y有關聯的可信度越小;②若兩個隨機變量的線性相關性越強,則相關系數r的值越接近于1;③“若
,則
類比推出,“若
,則
;④命題“有些有理數是無限循環小數,整數是有理數,所以整數是無限循環小數”是假命題,推理錯誤的原因是使用了“三段論”,推理形式錯誤.其中說法正確的有( )個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,在
處的切線方程為
.
(1)求,
;
(2)若,證明:
.
【答案】(1),
;(2)見解析
【解析】試題分析:(1)求出函數的導數,得到關于 的方程組,解出即可;
(2)由(1)可知,
,
由,可得
,令
, 利用導數研究其單調性可得
,
從而證明.
試題解析:((1)由題意,所以
,
又,所以
,
若,則
,與
矛盾,故
,
.
(2)由(1)可知,
,
由,可得
,
令,
,
令
當時,
,
單調遞減,且
;
當時,
,
單調遞增;且
,
所以在
上當單調遞減,在
上單調遞增,且
,
故,
故.
【點睛】本題考查利用函數的切線求參數的方法,以及利用導數證明不等式的方法,解題時要認真審題,注意導數性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了考察某校高三年級的教學水平,將抽查這個學校高三年級部分學生本學年的考試成績.已知該校高三年級共有14個班,假定該校每班人數都相同.為了全面地反映實際情況,采取以下兩種方法進行抽查:①從全年級14個班中任意抽取一個班,再從該班中任意抽取14人,考察他們的成績;②把該校高三年級的學生按成績分成優秀、良好、普通三個級別,從中抽取100名學生進行考察(已知若按成績分層,該校高三學生中優秀學生有105名,良好學生有420名,普通學生有175名).根據上面的敘述,試回答下列問題:
(1)以上調查各自采用的是什么抽樣方法?
(2)試分別寫出上面兩種抽樣方法各自抽取樣本的步驟.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學生志愿者人數分別是240,160,160.現采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。
(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?
(2)設抽出的7名同學分別用A,B,C,D,E,F,G表示,現從中隨機抽取2名同學承擔敬老院的衛生工作,求事件M“抽取的2名同學來自同一年級”發生的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com