【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F為PC的中點,AF⊥PB.
(1)求PA的長;
(2)求二面角B﹣AF﹣D的正弦值.
【答案】(1)2(2)
【解析】(1)如圖,連接BD交AC于點O
∵BC=CD,AC平分角BCD,∴AC⊥BD
以O為坐標原點,OB、OC所在直線分別為x軸、y軸,
建立空間直角坐標系O﹣xyz,
則OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.
又∵OD=CDsin=
,
∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣
,0,0)
由于PA⊥底面ABCD,可設P(0,﹣3,z)
∵F為PC邊的中點,∴F(0,﹣1,),由此可得
=(0,2,
),
∵=(
,3,﹣z),且AF⊥PB,
∴=6﹣
=0,解之得z=2
(舍負)
因此,=(0,0,﹣2
),可得PA的長為2
;
(2)由(1)知=(﹣
,3,0),
=(
,3,0),
=(0,2,
),
設平面FAD的法向量為=(x1,y1,z1),平面FAB的法向量為
=(x2,y2,z2),
∵=0且
=0,∴
,取y1=
得
=(3,
,﹣2),
同理,由=0且
=0,解出
=(3,﹣
,2),
∴向量、
的夾角余弦值為cos<
,
>=
=
=
因此,二面角B﹣AF﹣D的正弦值等于=
科目:高中數學 來源: 題型:
【題目】某保險公司決定每月給推銷員確定個具體的銷售目標,對推銷員實行目標管理.銷售目標確定的適當與否,直接影響公司的經濟效益和推銷員的工作積極性,為此,該公司當月隨機抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.
(1)①根據圖中數據,求出月銷售額在小組內的頻率.
②根據直方圖估計,月銷售目標定為多少萬元時,能夠使70%的推銷員完成任務?并說明理由.
(2)該公司決定從月銷售額為和
的兩個小組中,選取2位推銷員介紹銷售經驗,求選出的推銷員來自同一個小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
為參數),A,B是C上的動點,且滿足
(O為坐標原點),以原點O為極點,x軸的正半軸為極軸建立坐標系,點D的極坐標為
.
(1)求橢圓C的極坐標方程和點D的直角坐標;
(2)利用橢圓C的極坐標方程證明為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區工會利用“健步行”開展明年健步走積分獎勵活動.會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統中隨機抽取了1000名會員,統計了當天他們的步數,并將樣本數據分為
,
,
,
,
,
,
,
,
九組,整理得到如下頻率分布直方圖:
(1)從當天步數在,
,
的會員中按分層抽樣的方式抽取6人,再從這6人中隨機抽取2人,求這2人積分之和不少于220分的概率;
(2)求該組數據的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C經過點,
,且圓心在直線
上
(1)求圓C的方程.
(2)過點的直線與圓C交于A,B兩點,問:在直線
上是否存在定點N,使得
(
,
分別為直線AN,BN的斜率)恒成立?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一汽車廠生產A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產量如表所示(單位輛),若按A,B,C三類用分層抽樣的方法在這個月生產的轎車中抽取50輛,則A類轎車有10輛
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標準型 | 300 | 450 | 600 |
(1)求下表中z的值;
(2)用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經檢測它們的得分如下:94,86,92,96,87,93,90,82把這8輛轎車的得分看作一個總體,從中任取一個得分數記這8輛轎車的得分的平均數為
,定義事件
{
,且函數
沒有零點},求事件
發生的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現以邊AC的中點D為坐標原點,平面ABC內垂直于AC的直線為軸,直線AC為
軸,直線DA1為
軸建立空間直角坐標系,解決以下問題:
(1)求異面直線AB與A1C所成角的余弦值;
(2)求直線AB與平面A1BC所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com