【題目】在直角坐標系中,直線
的參數方程為
(
,
為參數),曲線
的參數方程為
(
為參數),直線
與曲線
交于
,
兩點.
(1)以坐標原點為極點,軸正半軸為極軸建立極坐標系,求曲線
的極坐標方程;
(2)若,點
,求
的值.
科目:高中數學 來源: 題型:
【題目】已知某地區某種昆蟲產卵數和溫度有關.現收集了一只該品種昆蟲的產卵數(個)和溫度
(
)的7組觀測數據,其散點圖如所示:
根據散點圖,結合函數知識,可以發現產卵數和溫度
可用方程
來擬合,令
,結合樣本數據可知
與溫度
可用線性回歸方程來擬合.根據收集到的數據,計算得到如下值:
27 | 74 | 182 |
表中,
.
(1)求和溫度
的回歸方程(回歸系數結果精確到
);
(2)求產卵數關于溫度
的回歸方程;若該地區一段時間內的氣溫在
之間(包括
與
),估計該品種一只昆蟲的產卵數的范圍.(參考數據:
,
,
,
,
.)
附:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從
開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數據顯示, 與
之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出
關于
的回歸直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有五個命題:
①函數的最小正周期是
;
②終邊在軸上的角的集合是
;
③在同一坐標系中,函數的圖象和函數
的圖象有三個公共點;
④把函數的圖象向右平移
個單位得到
的圖象;
⑤函數在
上是減函數;
其中真命題的序號是( 。
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為等差數列
的公差,數列
的前
項和
,滿足
(
),且
,若實數
(
,
),則稱
具有性質
.
(1)請判斷、
是否具有性質
,并說明理由;
(2)設為數列
的前
項和,若
是單調遞增數列,求證:對任意的
(
,
),實數
都不具有性質
;
(3)設是數列
的前
項和,若對任意的
,
都具有性質
,求所有滿足條件的
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,
,
,動點
滿足:直線
與直線
的斜率之積恒為
,記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若點位于第一象限,過點
,
分別作直線
,直線
,直線
,
交于點
.
①若點的橫坐標為-1,求點
的坐標;
②直線與曲線
交于點
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,有下列五個命題:
①若存在反函數,且與反函數圖象有公共點,則公共點一定在直線
上;
②若在
上有定義,則
一定是偶函數;
③若是偶函數,且
有解,則解的個數一定是偶數;
④若是函數
的周期,則
,也是函數
的周期;
⑤是函數
為奇函數的充分不必要條件。
從中任意抽取一個,恰好是真命題的概率為 ( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,如果存在實數
(
,且
不同時成立),使得
對
恒成立,則稱函數
為“
映像函數”.
(1)判斷函數是否是“
映像函數”,如果是,請求出相應的
的值,若不是,請說明理由;
(2)已知函數是定義在
上的“
映像函數”,且當
時,
.求函數
(
)的反函數;
(3)在(2)的條件下,試構造一個數列,使得當
時,
,并求
時,函數
的解析式,及
的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com