【題目】已知命題;命題
函數
在區間
上有零點.
(1)當時,若
為真命題,求實數
的取值范圍;
(2)若命題是命題
的充分不必要條件,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐A-BPC中,,M為AB的中點,D為PB的中點,且
為正三角形.
(1)求證:平面APC;
(2)若,
,求三棱錐D-BCM的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,側面
底面
,四邊形
是邊長為2的菱形,
,
,
,E,F分別為AC,
的中點.
(1)求證:直線EF∥平面;
(2)設分別在側棱
,
上,且
,求平面BPQ分棱柱所成兩部分的體積比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列有關平面向量分解定理的四個命題:
(1)一個平面內有且只有一對不平行的向量可作為表示該平面所有向量的基;
(2)一個平面內有無數多對不平行向量可作為表示該平面內所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個平面內任一非零向量都可唯一地表示成該平面內三個互不平行向量的線性組合.
其中正確命題的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)已知橢圓,直線
不過原點
且不平行于坐標軸,
與
有兩個交點
,
,線段
的中點為
.
(Ⅰ)證明:直線的斜率與
的斜率的乘積為定值;
(Ⅱ)若過點
,延長線段
與
交于點
,四邊形
能否為平行四邊形?若能,求此時
的斜率,若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,動點P是圓M:
上的任意一點,線段NP的垂直平分線和半徑MP相交于點Q.
求
的值,并求動點Q的軌跡C的方程;
若圓
的切線l與曲線C相交于A,B兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的內角
、
、
的對邊分別為
、
、
,
為
內一點,若分別滿足下列四個條件:
①;
②;
③;
④;
則點分別為
的( )
A.外心、內心、垂心、重心B.內心、外心、垂心、重心
C.垂心、內心、重心、外心D.內心、垂心、外心、重心
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下三個命題:
①若,則
;
②在中,若
,則
;
③在一元二次方程中,若
,則方程有實數根.
其中原命題、逆命題、否命題、逆否命題均為真命題的是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com