精英家教網 > 高中數學 > 題目詳情

【題目】已知某運動員每次投籃命中的概率都為40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果,經隨機模擬產生了如下20組隨機數據此估計,該運動員三次投籃恰有兩次命中的概率為(

137 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

A.0.40 B.0.30 C.0.35 D.0.25

【答案】B

【解析】組隨機數中表示三次投籃恰有兩次命中的有組隨機數,所以所求概率為,故選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于數集,其中 ,定義向量集.若對于任意,使得,則稱具有性質.例如具有性質

)若,且具有性質,求的值.

)若具有性質,求證: ,且當時,

)若具有性質,且 為常數),求有窮數列, , 的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的首項, ,

(1)求證:數列為等比數列;

(2)記,若Sn<100,求最大正整數n;

(3)是否存在互不相等的正整數ms,n,使m,s,n成等差數列,且am-1,as-1,an-1成等比數列?如果存在,請給以證明;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列為遞增的等比數列,

數列滿足

(Ⅰ)求數列的通項公式;(Ⅱ)求證: 是等差數列;

(Ⅲ)設數列滿足,且數列的前項和,并求使得對任意都成立的正整數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓錐曲線 為參數)和定點, 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們日平均增加的睡眠時間(單位:h).試驗的觀測結果如下:

服用A藥的20位患者日平均增加的睡眠時間:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B藥的20位患者日平均增加的睡眠時間:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分別計算兩組數據的平均數,從計算結果看,哪種藥的療效更好?

(2)根據兩組數據繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數學家,中國古典數學理論的奠基人之一,他的杰作《九章算術注》和《海島算經》是中國寶貴的古代數學遺產. 《九章算術·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術臑者,背節也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進行分割時所產生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,過右焦點且垂直于軸的直線截橢圓所得弦長是1

1)求橢圓的標準方程;

2)設點分別是橢圓的左,右頂點,過點的直線與橢圓交于兩點(不重合),證明:直線和直線交點的橫坐標為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视