【題目】著名數學家華羅庚先生曾說過:“數缺形時少直觀,形缺數時難入微數形結合百般好,隔裂分家萬事休.”在數學的學習和研究中,我們經常用函數的圖象來研究函數的性質,也經常用函數的解析式來琢磨函數的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對稱的優美曲線,下列函數中,其圖象大致可“完美”局部表達這條曲線的函數是( )
A.B.
C.D.
科目:高中數學 來源: 題型:
【題目】如圖,焦點在軸上的橢圓
與焦點在
軸上的橢圓
都過點
,中心都在坐標原點,且橢圓
與
的離心率均為
.
(Ⅰ)求橢圓與橢圓
的標準方程;
(Ⅱ)過點M的互相垂直的兩直線分別與,
交于點A,B(點A、B不同于點M),當
的面積取最大值時,求兩直線MA,MB斜率的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的四個頂點,過E的左焦點F且不與坐標軸垂直的直線l與E交于A,B兩點,線段AB的垂直平分線m與x軸,y軸分別交于M,N兩點,交線段AB于點C.
(1)求E的方程;
(2)設O為坐標原點,記的面積為
,
的面積為
,且
,當
時,求l的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足,an+2=3an+1﹣2an,a1=1,a2=3,記bn,Sn為數列{bn}的前n項和.
(1)求證:{an+1﹣an}為等比數列,并求an;
(2)求證:Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣tx+t.
(1)討論f(x)的單調性;
(2)當t=2時,方程f(x)=m﹣ax恰有兩個不相等的實數根x1,x2,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,P是橢圓的上頂點,過點P作斜率為
的直線l交橢圓于另一點A,設點A關于原點的對稱點為B
(1)求面積的最大值;
(2)設線段PB的中垂線與y軸交于點N,若點N在橢圓內部,求斜率k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com