精英家教網 > 高中數學 > 題目詳情

【題目】已知復數z=k﹣2i(k∈R)的共軛復數 ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若過點(0,﹣2)的直線l的斜率為k,求直線l與曲線y= 以及y軸所圍成的圖形的面積.

【答案】
(1)解:復數z=k﹣2i的共軛復數 =k+2i,

且z﹣( ﹣i)= ﹣2i,

∴(k﹣2i)﹣( ﹣i)= (k+2i)﹣2i,

∴(k﹣ )﹣i= k﹣i,

即k﹣ = k,

解得k=1;


(2)解:過點(0,﹣2)的直線l的斜率為k=1,

∴直線l的方程為:y=x﹣2;

,解得 ,

∴直線l與曲線y= 的交點為(4,2);

如圖所示,

曲線y= 與直線y=x﹣2以及y軸所圍成的圖形的面積為:

SOBC+∫02 dx+∫24 ﹣x+2)dx= ×2×2+ +( x2+2x) =


【解析】(1)利用復數相等與代數運算,列出方程求出k的值;(2)寫出直線l的方程,求出直線l與曲線y= 的交點,再利用積分求對應的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于定義域為的函數,如果存在區間),同時滿足:

內是單調函數;②當定義域是時, 的值域也是

則稱函數是區間上的“保值函數”.

(1)求證:函數不是定義域上的“保值函數”;

(2)已知)是區間上的“保值函數”,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數=ex(exa)﹣a2x

(1)討論的單調性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax1(x≥0)的圖象經過點(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數f(x)=a2x﹣ax2+8,x∈[﹣2,1]的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=﹣ (x∈R),區間M=[a,b](a<b),集合N={y|y=f (x),x∈M}.若M=N,則b﹣a的值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知 a>0 且 a≠1,若函數f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函數h(x)=f(x)﹣g(x)的定義域;
(2)討論不等式f(x)≥g(x)成立時x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于兩個定義域相同的函數f(x)、g(x),若存在實數m,n,使h(x)=mf(x)+ng(x),則稱函數f(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范圍;
(3)利用“基函數f(x)=log4(4x+1),g(x)=x﹣1)”生成一個函數h(x),使得h(x)滿足:
①是偶函數,②有最小值1,求h(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】生產甲乙兩種精密電子產品,用以下兩種方案分別生產出甲乙產品共種,現對這兩種方案生產的產品分別隨機調查了各次,得到如下統計表:

①生產件甲產品和件乙產品

正次品

甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

頻 數

②生產件甲產品和件乙產品

正次品

乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

頻 數

已知生產電子產品甲件,若為正品可盈利元,若為次品則虧損元;生產電子產品乙件,若為正品可盈利元,若為次品則虧損元.

(I)按方案①生產件甲產品和件乙產品,求這件產品平均利潤的估計值;

(II)從方案①②中選其一,生產甲乙產品共件,欲使件產品所得總利潤大于元的機會多,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的奇函數,且f(﹣3)=0,當x>0時,有f(x)﹣xf′(x)>0成立,則不等式f(x)>0的解集是(
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(0,3)
D.(﹣3,0)∪(3,+∞)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视