【題目】(本小題滿分14分)用這六個數字,可以組成多少個分別符合下
列條件的無重復數字的四位數:(1)奇數;(2)偶數;(3)大于的數.
科目:高中數學 來源: 題型:
【題目】(本小題滿分分)已知圓
有以下性質:
①過圓上一點
的圓的切線方程是
.
②若為圓
外一點,過
作圓
的兩條切線,切點分別為
,則直線
的方程為
.
③若不在坐標軸上的點為圓
外一點,過
作圓
的兩條切線,切點分別為
,則
垂直
,即
,且
平分線段
.
(1)類比上述有關結論,猜想過橢圓上一點
的切線方程(不要求證明);
(2)過橢圓外一點
作兩直線,與橢圓相切于
兩點,求過
兩點的直線方程;
(3)若過橢圓外一點
(
不在坐標軸上)作兩直線,與橢圓相切于
兩點,求證:
為定值,且
平分線段
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: +
=1(0<b<3)的左右焦點分別為E,F,過點F作直線交橢圓C于A,B兩點,若
且
(1)求橢圓C的方程;
(2)已知點O為原點,圓D:(x﹣3)2+y2=r2(r>0)與橢圓C交于M,N兩點,點P為橢圓C上一動點,若直線PM,PN與x軸分別交于點R,S,求證:|OR||OS|為常數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:如果函數y=f(x)在定義域內給定區間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數y=f(x)是[a,b]上的“平均值函數”,x0而是它的一個均值點. 例如y=|x|是[﹣2,2]上的“平均值函數”,0就是它的均值點.給出以下命題:
①函數f(x)=sinx﹣1是[﹣π,π]上的“平均值函數”;
②若y=f(x)是[a,b]上的“平均值函數”,則它的均值點x0≤ ;
③若函數f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函數”,則實數m∈(﹣2,0);
④若f(x)=lnx是區間[a,b](b>a≥1)上的“平均值函數”,x0是它的一個均值點,則lnx0< .
其中的真命題有(寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com