【題目】已知函數f(x)=x3﹣12x.
(1)求f′(1)的值;
(2)求函數f(x)的單調區間.
【答案】
(1)解:因為f(x)=x3﹣12x,
所以f′(x)=3x2﹣12,所以f′(1)=﹣9
(2)解:f′(x)=3x2﹣12,
解f′(x)>0,得x<﹣2或x>2.
解f′(x)<0,得﹣2<x<2.
所以(﹣∞,﹣2)和(2,+∞)為函數f(x)的單調增區間,(﹣2,2)為函數f(x)的單調減區間
【解析】(1)求導數,即可求f′(1)的值;(2)求導數,利用導數的正負求函數f(x)的單調區間.
【考點精析】掌握基本求導法則和利用導數研究函數的單調性是解答本題的根本,需要知道若兩個函數可導,則它們和、差、積、商必可導;若兩個函數均不可導,則它們的和、差、積、商不一定不可導;一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】規定投擲飛鏢3次為一輪,若3次中至少兩次投中8環以上為優秀,現采用隨機模擬實驗的方法估計某人投擲飛鏢的情況:先由計算器產生隨機數0或1,用0表示該次投標未在8環以上,用1表示該次投標在8環以上;再以每三個隨機數作為一組,代表一輪的結果,經隨機模擬實驗產生了如下20組隨機數:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
據此估計,該選手投擲飛鏢三輪,至少有一輪可以拿到優秀的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求函數h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的奇函數f(x),當x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調區間和極值;
(2)若關于x的方程f(x)=a有3個不同實根,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點,面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,已知曲線
:
,
:
,
:
,設
與
交于點
.
(1)求點的極坐標;
(2)若直線過點
,且與曲線
交于兩不同的點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,且點
在橢圓上,①求橢圓的方程;
②設分別為橢圓
的右頂點和上頂點,直線
和
與
軸和
軸相交于點
,求直線
的方程;
(2)設 過
點的直線
與橢圓
交于
兩點,且
均在
的右側,
,求橢圓離心率的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com