【題目】在中國決勝全面建成小康社會的關鍵之年,如何更好地保障和改善民生,如何切實增強政策“獲得感”,成為年全國兩會的重要關切.某地區為改善民生調研了甲、乙、丙、丁、戊
個民生項目,得到如下信息:①若該地區引進甲項目,就必須引進與之配套的乙項目;②丁、戊兩個項目與民生密切相關,這兩個項目至少要引進一個;③乙、丙兩個項目之間有沖突,兩個項目只能引進一個;④丙、丁兩個項目關聯度較高,要么同時引進,要么都不引進;⑤若引進項目戊,甲、丁兩個項目也必須引進.則該地區應引進的項目為( )
A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙
科目:高中數學 來源: 題型:
【題目】某醫藥開發公司實驗室有瓶溶液,其中
瓶中有細菌
,現需要把含有細菌
的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗次;
方案二:混合檢驗,將瓶溶液分別取樣,混合在一起檢驗,若檢驗結果不含有細菌
,則
瓶溶液全部不含有細菌
;若檢驗結果含有細菌
,就要對這
瓶溶液再逐瓶檢驗,此時檢驗次數總共為
.
(1)假設,采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細菌
的概率;
(2)現對瓶溶液進行檢驗,已知每瓶溶液含有細菌
的概率均為
.
若采用方案一.需檢驗的總次數為,若采用方案二.需檢驗的總次數為
.
(i)若與
的期望相等.試求
關于
的函數解析式
;
(ii)若,且采用方案二總次數的期望小于采用方案一總次數的期望.求
的最大值.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,過原點
且斜率為1的直線
交橢圓
于
兩點,四邊形
的周長與面積分別為8與
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線交橢圓
于
兩點,且
,求證:
到直線
的距離為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若與底面
所成角的正切值為2,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為定義域R上的奇函數,且在R上是單調遞增函數,函數
,數列
為等差數列,且公差不為0,若
,則
( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓的離心率為
,橢圓的短軸端點與雙曲線
的焦點重合,過點
且不垂直于
軸的直線
與橢圓
相交于
兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是圓O的直徑,點C是圓O上異于A,B的點,直線
平面
,E,F分別是
,
的中點.
(1)記平面與平面
的交線為l,試判斷直線l與平面
的位置關系,并加以證明;
(2)設,求二面角
大小的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橫坐標、縱坐標均為整數的點稱為整點,如果函數的圖象恰好通過
個整點,則稱函數
為
階整點函數.有下列函數:
①; ②
③
④
,
其中是一階整點函數的是( )
A. ①②③④ B. ①③④ C. ①④ D. ④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com