【題目】已知圓經過點
,圓
的圓心在圓
的內部,且直線
被圓
所截得的弦長為
.點
為圓
上異于
的任意一點,直線
與
軸交于點
,直線
與
軸交于點
.
(1)求圓的方程;
(2)求證: 為定值;
(3)當取得最大值時,求
.
【答案】(1);(2)見解析;(3)
.
【解析】
試題分析:(1)首先根據條件設出圓心及半徑,然后利用弦長公式求得半徑,再利用點到直線的距離公式求得圓心,從而求得圓的方程;(2)直線
的斜率不存在可直接求出定值,直線
與直線
的斜率存在時,設點
,由此得到直線
的方程與
的方程,從而求得點
的坐標,進而利用向量數量積公式求出定值;(3)首先求得
關于
的表達式,然后根據直線
與圓位置關系求得
的值.
試題解析:(1) 易知點在線段
的中垂線
上,故可設
,圓
的半徑為
∵直線被圓
所截得的弦長為
,且
∴到直線
的距離
,或
.
又圓的圓心在圓
的內部,
,圓
的方程
.
(2)證明: 當直線的斜率不存在時,
.
當直線與直線
的斜率存在時,設
,直線
的方程為
.
令得
.直線
的方程為
.
令得
.
,
故 為定值為
.
(3)解:
設,易知當直線
與圓
切于第三象限時,
取得最小值,
此時, 此時,
,故
.
科目:高中數學 來源: 題型:
【題目】為了迎接世博會,某旅游區提倡低碳生活,在景區提供自行車出租.該景區有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛.為了便于結算,每輛自行車的日租金(元)只取整數,并且要求出租自行車一日的總收入必須高于這一日的管理費用,用
(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東且與點A相距40
海里的位置B,經過40分鐘又測得該船已行駛到點A北偏東
+
(其中sin
=
,
)且與點A相距10
海里的位置C.
(I)求該船的行駛速度(單位:海里/小時);
(II)若該船不改變航行方向繼續行駛.判斷它是否會進入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:
月份 | |||
利潤 |
(1)求利潤關于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預測月和
月的利潤;
(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過萬?
相關公式: ,
=
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在
軸上,離心率
,且橢圓
經過點
,過橢圓
的左焦點
且不與坐標軸垂直的直線交橢圓
于
,
兩點.
(1)求橢圓的方程;
(2)設線段的垂直平分線與
軸交于點
,求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數據,
,
,…,
是棗強縣普通職工
(
,
)個人的年收入,設
個數據的中位數為
,平均數為
,方差為
,如果再加上世界首富的年收入
,則這
個數據中,下列說法正確的是( )
A.年收入平均數大大增加,中位數一定變大,方差可能不變
B.年收入平均數大大增加,中位數可能不變,方差變大
C.年收入平均數大大增加,中位數可能不變,方差也不變
D.年收入平均數可能不變,中位數可能不變,方差可能不變
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com