【題目】圖1是由矩形和菱形
組成的一個平面圖形,其中
,
,將其沿
折起使得
與
重合,連結
,如圖2.
(1)證明圖2中的四點共面,且平面
平面
;
(2)求圖2中的四邊形的面積.
科目:高中數學 來源: 題型:
【題目】某公司生產A種型號的電腦.2013年平均每臺電腦的生產成本為5000元,并按純利潤為20%定出廠價,2014年開始,公司更新設備,加強管理,逐步推行股份制,從而使生產成本逐年降低,2017年平均每臺A種型號的電腦出廠價僅是2013年的80%,實現了純利潤50%.
(1)求2017年每臺A種型號電腦的生產成本;
(2)以2013年的生產成本為基數,用二分法求2013-2017年間平均每年生產成本降低的百分率(精確度001).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中常數
.
(1)令,將函數
的圖像向左平移
個單位,再向上平移1個單位,得到函數
,求函數
的解析式;
(2)若在
上單調遞增,求
的取值范圍;
(3)在(1)的條件下的函數的圖像,區間
且
滿足:
在
上至少含有30個零點,在所有滿足上述條件的
中,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為保護環境,某單位采用新工藝,把二氧化碳轉化為一種可利用的化工產品。已知該單位每月的處理量最多不超過300噸,月處理成本(元)與月處理量
(噸)之間的函數關系式可近似的表示為:
,且每處理一噸二氧化碳得到可利用的化工產品價值為300元。
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)要保證該單位每月不虧損,則每月處理量應控制在什么范圍?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C所對的邊分別是a,b,c,向量=(cos B,cos C),
=(2a+c,b),且
⊥
.
(1)求角B的大。
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連結PE并延長交AB于點G.
(Ⅰ)證明:G是AB的中點;
(Ⅱ)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數與面積的和分別為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com