【題目】已知函數f(x)=x2﹣4|x|+3,x∈R.
(1)判斷函數的奇偶性并將函數寫成分段函數的形式;
(2)畫出函數的圖象,根據圖象寫出它的單調區間;
(3)若函數f(x)的圖象與y=a的圖象有四個不同交點,則實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中點.
(1)證明:面PAD⊥面PCD;
(2)求直線AC與PB所成角的余弦值;
(3)求二面角A﹣MC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,曲線
上任意一點
滿足
;曲線
上的點
在
軸的右邊且
到
的距離與它到
軸的距離的差為1.
(1)求的方程;
(2)過的直線
與
相交于點
,直線
分別與
相交于點
和
.求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣t)|x|(t∈R).
(1)討論y=f(x)的奇偶性;
(2)當t>0時,求f(x)在區間[﹣1,2]的最小值h(t).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點,且滿足:①
與
(
為坐標原點)的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ ax2+(1﹣a)x,其中a∈R,f(x)的導函數是f′(x).
(1)求函數f(x)的極值;
(2)在曲線y=f(x)的圖象上是否存在不同的兩點A(x1 , y1),B(x2 , y2)(x1≠x2),使得直線AB的斜率k=f′( )?若存在,求出x1與x2的關系;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x),滿足當x>0時,f(x)>1,且對任意的x,y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求f(0)的值;
(2)求證:對任意x∈R,都有f(x)>0;
(3)解不等式f(3﹣2x)>4.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com