【題目】已知函數
(1)判斷f(x)的單調性,說明理由.
(2)解方程f(2x)=f﹣1(x).
【答案】
(1)解:4x﹣1>0,所以x>0,所以定義域是(0,+∞),f(x)在(0,+∞)上單調增.
證法一:設0<x1<x2,則 =
又∵0<x1<x2,∴ ,
∴ ,即
∴f(x1)<f(x2),f(x)在(0,+∞)上單調增.
證法二:∵y=log4x在(0,+∞)上都是增函數,
y=4x﹣1在(0,+∞)上是增函數且y=4x﹣1>0
∴ 在(0,+∞)上也是增函數
(2)解: ,
∴f(2x)=f﹣1(x),即0<42x﹣1=4x+142x﹣4x﹣2=0,解得4x=﹣1(舍去)或4x=2,
∴
經檢驗, 是方程的根
【解析】(1)利用函數單調性的定義,或復合函數單調性的判定方法,可得結論;(2)求出f﹣1(x),可得方程,解方程,即可得到結論.
【考點精析】解答此題的關鍵在于理解復合函數單調性的判斷方法的相關知識,掌握復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”,以及對函數的零點的理解,了解函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點.
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2016高考浙江文數】如圖,設拋物線的焦點為F,拋物線上的點A到y軸的距離等于|AF|-1.
(I)求p的值;
(II)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x
軸交于點M.求M的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且bsinA= acosB. (Ⅰ)求角B的大。
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【天津市紅橋區重點中學八校2017屆高三4月聯考數學(文)】已知橢圓的中心在原點,離心率等于
,它的一個短軸端點恰好是拋物線
的焦點
(1)求橢圓的方程;
(2)已知、
是橢圓上的兩點,
,
是橢圓上位于直線
兩側的動點.①若直線
的斜率為
,求四邊形
面積的最大值;
②當,
運動時,滿足
,試問直線
的斜率是否為定值,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2015高考福建文數】全網傳播的融合指數是衡量電視媒體在中國網民中影響了的綜合指標.根據相關報道提供的全網傳播2015年某全國性大型活動的“省級衛視新聞臺”融合指數的數據,對名列前20名的“省級衛視新聞臺”的融合指數進行分組統計,結果如表所示.
組號 | 分組 | 頻數 |
1 | | 2 |
2 | | 8 |
3 | | 7 |
4 | | 3 |
(Ⅰ)現從融合指數在和
內的“省級衛視新聞臺”中隨機抽取2家進行調研,求至少有1家的融合指數在
的概率;
(Ⅱ)根據分組統計表求這20家“省級衛視新聞臺”的融合指數的平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形是梯形.四邊形
是矩形.且平面
平面
,
,
,
,
是線段
上的動點.
(Ⅰ)試確定點的位置,使
平面
,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
(1)求證:平面平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com