【題目】如圖,已知橢圓過點
兩個焦點為
和
.圓O的方程為
.
(1)求橢圓C的標準方程;
(2)過且斜率為
的動直線l與橢圓C交于A、B兩點,與圓O交于P、Q兩點(點A、P在x軸上方),當
成等差數列時,求弦PQ的長.
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
(1)已知二次函數,試判斷
是否為“局部奇函數”?并說明理由;
(2)若是定義在區間
上的“局部奇函數”,求實數
的取值范圍;
(3)若為定義域
上的“局部奇函數”,求實數
的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
且滿足
,當
時,
.
(1)判斷在
上的單調性并加以證明;
(2)若方程有實數根
,則稱
為函數
的一個不動點,設正數
為函數
的一個不動點,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某某大學藝術專業400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區間[40,50)內的人數;
(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從
開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入 | 1 | 2 | 3 | 4 | 5 |
銷售收益 | 2 | 3 | 2 | 7 |
由表中的數據顯示, 與
之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出
關于
的回歸直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.設m為實數,若方程表示雙曲線,則m>2.
B.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
C.命題“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命題“若x0為y=f(x)的極值點,則f’(x)=0”的逆命題是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了節能減排,發展低碳經濟,我國政府從2001年起就通過相關政策推動新能源汽車產業發展.下面的圖表反映了該產業發展的相關信息:
中國新能源汽車產銷情況一覽表 | ||||
新能源汽車生產情況 | 新能源汽車銷售情況 | |||
產品(萬輛) | 比上年同期 | 銷量(萬輛) | 比上年同期 | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
根據上述圖表信息,下列結論錯誤的是( )
A.2017年3月份我國新能源汽車的產量不超過萬輛
B.2017年我國新能源汽車總銷量超過萬輛
C.2018年8月份我國新能源汽車的銷量高于產量
D.2019年1月份我國插電式混合動力汽車的銷量低于萬輛
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com