【題目】已知函數,
.
(1)若在區間
上恒成立,求a的取值范圍.
(2)對任意,總存在唯一的
,使得
成立,求a的取值范圍.
【答案】(1);(2)
【解析】
(1)討論與
的大小去掉絕對值,然后分類討論討論導數符號研究函數在
,
的單調性,從而求出函數
的最小值,使
的最小值恒大于等于
,求出
的取值范圍;
(2)根據(1)的分類討論求出函數的最小值,使
的最小值恒小于等于
的最小值,從而求出
的取值范圍.
(1)①當時,
,
,
,
恒成立,
在
,
上增函數,故當
時,
(e)
②當時,
,
,
當
即
時,
在
時為正數,所以
在區間
,
上為增函數,
故當時,
,且此時
當
,即
時,
在
時為負數,在間
,
時為正數,
所以在區間
,
上為減函數,在
,
上為增函數,故當
時,
,
且此時(e)
當
,即
時,
在
時為負數,所以
在區間
,
上為減函數,
故當時,
(e)
綜上所述,函數的最小值為
所以當時,得
;當
時,無解;
當時,得
不成立.
綜上,所求的取值范圍是
(2)①當時,
在
,
單調遞增,需滿足
,
解得
②當時,
在
,
先減后增,需滿足
,即
因為單調遞減,所以
因此
③當時,
在
遞增,在
遞減,在
,
遞增,
所以需滿足,即
,
設,
則,
,所以
遞增,且
,
所以恒成立,即
不成立,舍去
.
④當時,
在
遞增,在
遞減,在
,
遞增,
所以需滿足即
,
因為,所以
不成立,舍去
.
綜上,所求的取值范圍是
科目:高中數學 來源: 題型:
【題目】已知Rt△ABC如圖(1),∠C=90°,D.E分別是AC,AB的中點,將△ADE沿DE折起到PDE位置(即A點到P點位置)如圖(2)使∠PDC=60°.
(1)求證:BC⊥PC;
(2)若BC=2CD=4,求點D到平面PBE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐的展開圖如圖二,其中四邊形
為邊長等于
的正方形,
和
均為正三角形,在三棱錐
中:
(1)證明:平面平面
;
(2)若是
的中點,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點,若
為線段
上的動點(不含
).
(1)平面與平面
是否互相垂直?如果是,請證明;如果不是,請說明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】郴州某超市計劃按月訂購一種飲料,每天進貨量相同,進貨成本每瓶6元,售價每瓶8元,未售出的飲料降價處理,以每瓶3元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 |
|
|
|
|
|
|
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.
(1)求六月份這種飲料一天的需求量X(單位:瓶)的分布列;
(2)設六月份一天銷售這種飲料的利潤為Y(單位:元),當六月份這種飲料一天的進貨量n(單位:瓶)為多少時,Y的數學期望達到最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱錐P-EAD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年1月1日新修訂的個稅法正式實施,規定:公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應納稅所得額.此項稅款按下表分段累計計算(預扣):
全月應繳納所得額 | 稅率 |
不超過3000元的部分 | |
超過3000元至12000元的部分 | |
超過12000元至25000元的部分 |
國家在實施新個稅時,考慮到納稅人的實際情況,實施了《個人所得稅稅前專項附加扣稅暫行辦法》,具體如下表:
項目 | 每月稅前抵扣金額(元) | 說明 |
子女教育 | 1000 | 一年按12月計算,可扣12000元 |
繼續教育 | 400 | 一年可扣除4800元,若是進行技能職業教育或者專業技術職業資格教育一年可扣除3600元 |
大病醫療 | 5000 | 一年最高抵扣金額為60000元 |
住房貸款利息 | 1000 | 一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來扣除 |
住房租金 | 1500/1000/800 | 扣除金額需要根據城市而定 |
2000 | 一年可扣除24000元,若不是獨生子女,子女平均扣除.贍養老人年齡需要在60周歲及以上 |
老李本人為獨生子女,家里有70歲的老人需要贍養,有一個女兒正讀高三,他每月還需繳納住房貸款2734元.若2019年11月老李工資,薪金所得為20000元,按照《個人所得稅稅前專項附加扣稅暫行辦法》,則老李應繳納稅款(預扣)為______元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,且
()求數列
的通項公式;
()若數列
滿足
,求數列
的通項公式;
()在(
)的條件下,設
,問是否存在實數
使得數列
是單調遞增數列?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com