精英家教網 > 高中數學 > 題目詳情

【題目】下表是某廠生產某種產品的過程中記錄的幾組數據,其中表示產量(單位:噸),表示生產中消耗的煤的數量(單位:噸).

(1)試在給出的坐標系下作出散點圖,根據散點圖判斷,在中,哪一個方程更適合作為變量關于的回歸方程模型?(給出判斷即可,不需要說明理由)

(2)根據(1)的結果以及表中數據,建立變量關于的回歸方程.并估計生產噸產品需要準備多少噸煤.參考公式:.

【答案】(1)見解析;(2)

【解析】

(1)根據所給數據,畫散點圖即可,根據散點圖知更適合作為變量關于的回歸方程模型;

(2)計算回歸系數,寫出回歸方程,代入回歸方程,即可估算.

散點圖

更適合作為變量關于的回歸方程模型.

2,

,

所以,回歸方程為.

估計生產100噸產品需要噸煤炭.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現對一批該設備進行調查,得到這批設備自購入使用之日起,前五年平均每臺設備每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

1.1

1.5

1.8

2.2

2.4

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)若該設備的價格是每臺5萬元,甲認為應該使用滿五年換一次設備,而乙則認為應該使用滿十年換一次設備,你認為甲和乙誰更有道理?并說明理由.

(參考公式: .)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個直角三角形的三個頂點分別在底面棱長為2的正三棱柱的側棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設處,
則有
該直角三角形斜邊

故答案為.

型】填空
束】
16

【題目】已知函數f(x)=,g(x)=,若函數y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=sinx﹣cosx,x∈[0,+∞).
(1)證明: ;
(2)證明:當a≥1時,f(x)≤eax﹣2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x,y滿足約束條件 ,若z=y﹣ax取得最大值的最優解不唯一,則實數a的值為(
A. 或﹣1
B.2或
C.2或﹣1
D.2或1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,),其圖像與直線相鄰兩個交點的距離為,若對于任意的恒成立, 則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一次考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個是正確的.評分標準規定:每題只選一個選項,答對得5分,不答或答錯得零分.某考生已確定有7道題的答案是正確的,其余題中:有一道題都可判斷兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只好亂猜.試求出該考生:

Ⅰ)得50分的概率;

Ⅱ)所得分數的數學期望(用小數表示,精確到0.01k^s*5#u)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (a>0,且a≠1)的圖象上關于y軸對稱的點至少有5對,則實數a的取值范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是一正方體被截去一部分后所得幾何體的三視圖,則該幾何體的表面積為(

A.54
B.162
C.54+18
D.162+18

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视