【題目】如圖,在四棱錐中,
,
,
.
(1)證明:平面
;
(2)若是
的中點,
,
,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個洞(或數字),其相對兩面之數字和必為七.顯然,擲一次六面骰,只能產生六個數之一(正上面).現欲要求你設計一個“十進制骰”,使其擲一次能產生0~9這十個數之一,而且每個數字產生的可能性一樣.請問:你能設計出這樣的骰子嗎?若能,請寫出你的設計方案;若不能,寫出理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側棱PC上的動點.
(1)求證:BD⊥AE
(2)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中醫藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗
次;(2)混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為
.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數為
;采用混合檢驗的方式,樣本簡要檢驗的總次數為
;
(。┤,試運用概率與統計的知識,求
關于
的函數關系
,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數的期望比逐份檢驗的總次數的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線與圓
相交于
,
兩點,且點
的橫坐標為
.
是拋物線
的焦點,過焦點的直線
與拋物線
相交于不同的兩點
,
.
(1)求拋物線的方程.
(2)過點,
作拋物線
的切線
,
,
是
,
的交點,求證:點
在定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數為( )
①面積的最小值為4;
②以為直徑的圓與x軸相切;
③記,
,
的斜率分別為
,
,
,則
;
④過焦點F作y軸的垂線與直線,
分別交于點M,N,則以
為直徑的圓恒過定點.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com