【題目】某中醫藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗
次;(2)混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為
.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數為
;采用混合檢驗的方式,樣本簡要檢驗的總次數為
;
(。┤,試運用概率與統計的知識,求
關于
的函數關系
,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數的期望比逐份檢驗的總次數的期望少,求
的最大值(
,
,
,
,
,
)
科目:高中數學 來源: 題型:
【題目】甲、乙兩地相距300千米,汽車從甲地勻速行駛到乙地,速度不超過100千米/小時,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成,可變部分與速度(千米/小時)的平方成正比,比例系數為
(
),固定部分為1000元.
(1)把全程運輸成本(元)表示為速度
(千米/小時)的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,汽車應以多大速度行駛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系內,曲線的參數方程為
(
為參數).以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)把曲線和直線
化為直角坐標方程;
(2)過原點引一條射線分別交曲線
和直線
于
,
兩點,射線上另有一點
滿足
,求點
的軌跡方程(寫成直角坐標形式的普通方程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,曲線
的參數方程為
(
為參數,且
).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)已知點P的極坐標為,Q為曲線
上的動點,求
的中點M到曲線
的距離的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com