【題目】已知橢圓C:,直線l:y=kx+b與橢圓C相交于A、B兩點.
(1)如果k+b=﹣,求動直線l所過的定點;
(2)記橢圓C的上頂點為D,如果∠ADB=,證明動直線l過定點P(0,﹣
);
(3)如果b=﹣,點B關于y軸的對稱點為B
,向直線AB
是過定點?如果是,求出定點的坐標;如果不是,請說明理由.
【答案】(1)定點(1,﹣);(2)見解析;(3)定點(0,﹣2).
【解析】
(1)把b=﹣k﹣代入直線方程可得定點坐標;
(2)根據∠ADB=,可得
,結合韋達定理可得
關系;
(3)結合對稱性求出直線AB的方程,結合韋達定理,從而可得定點坐標.
(1)∵k+b=﹣,∴b=﹣k﹣
,∴y=kx﹣k﹣
=k(x﹣1)﹣
,
所以動直線l過定點(1,﹣).
(2)聯立消去y得(1+2k2)x2+4kbx+2b2﹣2=0,
設A(x1,y1),B(x2,y2),則x1+x2=﹣ ,
∵∠ADB=,又D(0,1),
∴(x1,y1﹣1)(x2,y2﹣1)=x1x2+(y1﹣1)(y2﹣1)=x1x2+(kx1+b﹣1)(kx2+b﹣1)
=x1x2+k2x1x2+(b﹣1)2+k(b﹣1)(x1+x2)
=(1+k2)x1x2+k(b﹣1)(x1+x2)+(b﹣1)2
=(1+k2)×+k(b﹣1)×
+(b﹣1)2
=(b﹣1),
∴(b﹣1)=0,又b≠1(否則直線l過D),
∴b=﹣,所以動直線l過定點(0,﹣
).
(3)b=﹣,直線l為:y=kx﹣
,由(2)知x1+x2=
,
經過A(x1,y1),B′(﹣x2,y2)的直線方程為: ,
∴ ,
令x=0得y﹣ ,
∴y=kx1﹣ ,
所以直線AB′是過定點(0,﹣2).
科目:高中數學 來源: 題型:
【題目】今年4月23日我市正式宣布實施“3+1+2”的高考新方案,“3”是指必考的語文、數學、外語三門學科,“1”是指在物理和歷史中必選一科,“2”是指在化學、生物、政治、地理四科中任選兩科.為了解我校高一學生在物理和歷史中的選科意愿情況,進行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個樣本,統計知其中有17個男生選物理,6個女生選歷史.
(I)根據所抽取的樣本數據,填寫答題卷中的列聯表. 并根據統計量判斷能否有
的把握認為選擇物理還是歷史與性別有關?
(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有
人,求隨機變量
的分布列和數學期望.(
的計算公式見下)
,臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設點,直線
,點
在直線
上移動,
是線段
與
軸的交點,
,
.
(1)求動點的軌跡
的方程;
(2)直線過點
,與軌跡
交于
兩點,過點
的直線與直線
交于點
,求證:
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)如圖,曲線由上半橢圓
和部分拋物線
連接而成,
的公共點為
,其中
的離心率為
.
(Ⅰ)求的值;
(Ⅱ)過點的直線
與
分別交于
(均異于點
),若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,
,且小正方形與大正方形面積之比為
,則
的值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大衍數列,來源于《乾坤譜》中對易傳“大衍之數五十“的推論.主要用于解釋中國傳統文化中的太極衍生原理數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和是中華傳統文化中隱藏著的世界數學史上第一道數列題其規律是:偶數項是序號平方再除以2,奇數項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數列的前100項而設計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數?,
? B.
是奇數?,
?
C. 是偶數?,
? D.
是奇數?,
?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com