【題目】在長方體,中,
,過
三點的平面D截去長方體的一個角后,得到如圖所示的幾何體
.
(1)求幾何體的體積;
(2)求直線與面
所成角.(用反三角表示)
科目:高中數學 來源: 題型:
【題目】已知函數,函數g(x)=-2x+3.
(1)當a=2時,求f(x)的極值;
(2)討論函數的單調性;
(3)若-2≤a≤-1,對任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求實數t的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,當點
在
的圖象上運動時,點
在函數
的圖象上運動.(其中
).
(1)求的表達式;
(2)設集合,
,若
(
為空集),求實數
的取值范圍;
(3)設,若函數
(
)的值域為
,求實數
、
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的焦距是
,長軸長是短軸長3倍,任作斜率為
的直線
與橢圓
交于
兩點(如圖所示),且點
在直線
的左上方.
(1)求橢圓的方程;
(2)若,求
的面積;
(3)證明:的內切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬中,側棱
底面
,且
,點
是
的中點,連接
、
、
.
(1)證明:平面
;
(2)證明:平面
.試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,請說明理由;
(3)記陽馬的體積為
,四面體
的體積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,欲在一四邊形花壇內挖一個等腰三角形的水池
,且
,已知四邊形
中,
是等腰直角三角形,
米,
是等腰三角形,
,
的大小為
,要求
的三個頂點在花壇的邊緣上(即在四邊形
的邊上),設點
到水池底邊
的距離為
,水池的面積為
平方米.
(1)求的長;
(2)試將表示成關于
的函數,并求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,
(1)若函數f(x)有兩個零點,求實數a的取值范圍;
(2)若a=3,且對任意的x1∈[-1,2],總存在,使g(x1)-f(x2)=0成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若是函數
的一個極值點,試求
的單調區間;
(2)若且
,是否存在實數a,使得
在區間
上的最大值為4?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com