【題目】已知函數,
.
(Ⅰ)求函數的極值;
(Ⅱ)若實數為整數,且對任意的
時,都有
恒成立,求實數
的最小值.
科目:高中數學 來源: 題型:
【題目】對于函數,有下列4個命題:①任取
,都有
恒成立;②
,對于一切
恒成立;③函數
有3個零點;④對任意
,不等式
恒成立.則其中所有真命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1,F2,離心率為
,過F1的直線l與橢圓C交于M,N兩點,且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知等腰梯形中,
是
的中點,
,將
沿著
翻折成
,使平面
平面
.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點P,使得
平面
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為
,
,消去參數可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標與直角坐標的互化公式可得
可得曲線C的極坐標方程.
(2)由(1)不妨設M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標方程為,
即.
(2)由(1)不妨設M(),
,(
),
,
,
當 時,
,
所以△MON面積的最大值為.
【題型】解答題
【結束】
23
【題目】已知函數的定義域為
;
(1)求實數的取值范圍;
(2)設實數為
的最大值,若實數
,
,
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點
為極點,
軸正半軸為極軸建立極坐標系.若曲線
的極坐標方程為
,
點的極坐標為
,在平面直角坐標系中,直線
經過點
,且傾斜角為
.
(1)寫出曲線的直角坐標方程以及點
的直角坐標;
(2)設直線與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數圖象兩條相鄰的對稱軸間的距離為
.
(1)求的值;
(2)將函數的圖象沿
軸向左平移
個單位長度后,再將得到的圖象上各點的橫坐標變為原來的
倍,縱坐標不變,得到函數
的圖象,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com