【題目】現從某醫院中隨機抽取了7位醫護人員的關愛患者考核分數(患者考核:10分制),用相關的特征量表示;醫護專業知識考核分數(試卷考試:100分制),用相關的特征量
表示,數據如下表:
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
98 | 88 | 96 | 91 | 90 | 92 | 96 | |
9.9 | 8.6 | 9.5 | 9.0 | 9.1 | 9.2 | 9.8 |
(1)求關于
的線性回歸方程(計算結果精確到0.01);
(2)利用(1)中的線性回歸方程,分析醫護專業考核分數的變化對關愛患者考核分數的影響,并估計某醫護人員的醫護專業知識考核分數為95分時,他的關愛患者考核分數(精確到0.1)
附:回歸直線方程中斜率和截距的最小二乘法估計公式分別為
,
.
科目:高中數學 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1 , E,F分別是上底面A1B1C1D1和側面CDD1C1的中心,若 =x
+y
+z
,則x+y+z= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數字,
,
,這三張卡片除標記的數字外完全相同。隨機有放回地抽取
次,每次抽取
張,將抽取的卡片上的數字依次記為
,
,
.
(Ⅰ)求“抽取的卡片上的數字滿足”的概率;
(Ⅱ)求“抽取的卡片上的數字,
,
不完全相同”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題: ①若a<b,則a2<b2;
②若a≥b>﹣1,則 ≥
;
③若正整數m和n滿足m<n,則 ≤
;
④若x>0,且x≠1,則lnx+ ≥2.
其中所有真命題的序號是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2-(a+2)x+lnx
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對任意x1,x2∈(0,+∞),x1<x2,有f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R. (Ⅰ)求f(x)的單調區間;
(Ⅱ)若f(x)存在極值點x0 , 且f(x1)=f(x0),其中x1≠x0;求證:x1+2x0=0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[2019·濰坊期末]某鋼鐵加工廠新生產一批鋼管,為了了解這批產品的質量狀況,檢驗員隨機抽取了100件鋼管作為樣本進行檢測,將它們的內徑尺寸作為質量指標值,由檢測結果得如下頻率分布表和頻率分布直方圖:
分組 | 頻數 | 頻率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合計 | 100 | 1 |
(1)求,
;
(2)根據質量標準規定:鋼管內徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在或
為合格等級,鋼管尺寸在
為優秀等級,鋼管的檢測費用為0.5元/根.
(i)若從和
的5件樣品中隨機抽取2根,求至少有一根鋼管為合格的概率;
(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:
①對該批剩余鋼管不再進行檢測,所有鋼管均以45元/根售出;
②對該批剩余鋼管一一進行檢測,不合格產品不銷售,合格等級的鋼管50元/根,優等鋼管60元/根.
請你為該企業選擇最好的銷售方案,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(sin(A﹣B),
,
=(1,2sinB),且
=﹣sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角. (Ⅰ)求角C的大。
(Ⅱ)若 ,且S△ABC=
,求邊c的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)判斷并證明函數的單調性;
(2)若函數為奇函數,求實數
的值;
(3)在(2)條件下,若對任意的正數,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com