【題目】已知是方程
的兩根, 數列
是公差為正的等差數列,數列
的前
項和為
,且
.
(1)求數列的通項公式;
(2)記,求數列
的前
項和
.
【答案】(1);(2)
.
【解析】試題分析:(1)根據數列為等差數列,且
是方程
的兩根,利用韋達定理出關于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數列
的通項公式,由
得
,兩式相減,化簡可得
是以
為公比的等比數列,根據等比數列的定義可寫出
的通項公式;(2)由(1)可得
,利用錯位相減法求和即可得數列
的前
項和
.
試題解析:(1)由.且
得
,
,
在中,令
得
當
時,T
=
,
兩式相減得,
.
(2) ,
,
,
=2
=
.
【 方法點睛】本題主要考查等比數列和等差數列的通項以及錯位相減法求數列的的前 項和,屬于中檔題.一般地,如果數列
是等差數列,
是等比數列,求數列
的前
項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數列
的公比,然后作差求解, 在寫出“
”與“
” 的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“
”的表達式.
科目:高中數學 來源: 題型:
【題目】關于f(x)=4sin (x∈R),有下列命題
①由f(x1)=f(x2)=0可得x1-x2是π的整數倍;
②y=f(x)的表達式可改寫成y=4cos;
③y=f(x)圖象關于對稱;
④y=f(x)圖象關于x=-對稱.
其中正確命題的序號為________(將你認為正確的都填上)。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《最強大腦》是江蘇衛視推出國內首檔大型科學類真人秀電視節目,該節目集結了國內外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分,假設每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結果相互獨立.
(1)求比賽結束時A隊的得分高于B隊的得分的概率;
(2)求比賽結束時B隊得分X的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若
,則稱
為
的“不動點”;若
,則稱
為
的“穩定點”.函數
的“不動點”和“穩定點”的集合分別記為
和
,即
,
.
()設函數
,求集合
和
.
()求證:
.
()設函數
,且
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大小;
(Ⅲ)在棱AE上是否存在點F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求
的值域;
(2)當時,函數
的圖象關于
對稱,求函數
的對稱軸.
(3)若圖象上有一個最低點
,如果圖象上每點縱坐標不變,橫坐標縮短到原來的
倍,然后向左平移1個單位可得
的圖象,又知
的所有正根從小到大依次為
,且
,求
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,四邊形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,將四邊形ABCD沿著BD折疊,得到圖2所示的三棱錐A﹣BCD,其中AB⊥CD.
(1)證明:平面ACD⊥平面BAD;
(2)若F為CD中點,求二面角C﹣AB﹣F的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com