【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
【答案】
(1)解:將圓C的方程x2+y2﹣8y+12=0配方得標準方程為x2+(y﹣4)2=4,
則此圓的圓心為(0,4),半徑為2.
若直線l與圓C相切,則有 .解得
(2)解:聯立方程 并消去y,
得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.
設此方程的兩根分別為x1、x2,
所以x1+x2=﹣ ,x1x2=
則AB= =
=2
兩邊平方并代入解得:a=﹣7或a=﹣1,
∴直線l的方程是7x﹣y+14=0和x﹣y+2=0.
【解析】把圓的方程化為標準方程后,找出圓心坐標與圓的半徑r,(1)當直線l與圓相切時,圓心到直線的距離d等于圓的半徑r,利用點到直線的距離公式表示出圓心到直線l的距離d,讓d等于圓的半徑r,列出關于a的方程,求出方程的解即可得到a的值;(2)聯立圓C和直線l的方程,消去y后,得到關于x的一元二次方程,然后利用韋達定理表示出AB的長度,列出關于a的方程,求出方程的解即可得到a的值.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對數的底數,e=2.71828…
(1)當a=0時,解不等式f(x)<2;
(2)求函數f(x)的單調增區間;
(3)設a≥ ,討論關于x的方程f(f(x))=
的解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
與
軸的交點是橢圓
:
的一個焦點.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
、
兩點,是否存在
使得以線段
為直徑的圓恰好經過坐標原點
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】1979年,李政道博士給中國科技大學少年班出過一道智趣題:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡覺,準備第二天再分,夜里1只猴子偷偷爬起來,先吃掉一個桃子,然后將其分成5等份,藏起自己的一份就去睡覺了;第2只猴子又爬起來,將剩余的桃子吃掉一個后,也將桃子分成5等份;藏起自己的一份睡覺去了;以后的3只猴子都先后照此辦理,問:最初至少有多少個桃子?最后至少剩下多少個桃子?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.
(1)求函數f(x)的解析式;
(2)求函數g(x)=f(x﹣ )﹣f(x+
)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率等于40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下2-組隨機數:
907 966 191 925 271 932 812 458
569 683 431 257 393 027 556 488
730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 f(x)=ax+lnx,其中a為常數,設e為自然對數的底數.
(1)當a=-1時,求的最大值;
(2)若f(x)在區間(0,e]上的最大值為-3,求a的值;
(3)當a=-1時,試推斷方程是否有實數解 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com