精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)求的單調區間;

(2)當時,,求的取值范圍.

【答案】(1)見解析;(2)

【解析】

1)求導之后,通過對分子的二次函數的圖像進行討論,依次得到在不同范圍中時,導函數的符號,從而求得單調區間;(2)根據(1)中所求在不同范圍時的單調區間,得到的圖像,通過圖像找到恒成立所需條件,從而求得的取值范圍.

(1)

①當時,

,解得,,且

時,;當時,

所以,的單調遞增區間是,單調遞減區間是;

②當時,

所以,的單調遞增區間是,單調遞減區間是;

③當時,令,解得,,并且

時,;當時,.

所以的單調遞增區間是,單調遞減區間是;

④當時,,所以的單調遞增區間是

⑤當時,令,解得,,且

時,;當時,

所以,的單調遞減區間是,單調遞增區間是

(2)由及(1)知,

①當時,,不恒成立,因此不合題意;

②當時,需滿足下列三個條件:

⑴極大值:,得

⑵極小值:

⑶當時,

時,,故

所以;

③當時,單調遞增,

所以;

④當時,

極大值:

極小值:

由②中⑶知,解得

所以

綜上所述,的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數方程為為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價格購買手機.某機構為了解市民使用手機的價格情況,隨機選取了100人進行調查,并將這100人使用的手機價格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:

(1)求圖中的值;

(2)求這組數據的平均數和中位數(同一組中的數據用該組區間的中間值作代表);

(3)利用分層抽樣從手機價格在的人中抽取5人,并從這5人中抽取2人進行訪談,求抽取出的2人的手機價格在不同區間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設過右焦點F傾斜角為的直線交橢圓MA、B兩點.

(1)求橢圓M的方程;

(2)求證:

(3)設過右焦點F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:

組別

頻數

(Ⅰ)求所得樣本的中位數(精確到百元);

(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;

(Ⅲ)已知樣本數據中旅游費用支出在范圍內的名學生中有名女生, 名男生,現想選其中名學生回訪,記選出的男生人數為,求的分布列與數學期望.

附:若,則,

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解高二年級學生某次數學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數學成績,發現都在內現將這100名學生的成績按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數據低于130分的頻率為

C. 總體的中位數保留1位小數估計為

D. 總體分布在的頻數一定與總體分布在的頻數相等

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若的極大值點,求的值;

2)若上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐P-ABC底面各棱長均為1、高為,其內切球的球心為0,半徑為r.求底面ABC內與點O距離不大于2r的點所形成的平面區域的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷正確的是( )

A. 是實數,則“”是“ ”的充分而不必要條件

B. :“,”則有:不存在,

C. 命題“若,則”的否命題為:“若,則

D. ,”為真命題

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视