【題目】已知a>0,b>0,c>0,函數f(x)=|x﹣a|+|x+b|+c的最小值為1.
(1)求a+b+c的值;
(2)求證:a2+b2+c2 .
【答案】
(1)解:∵a>0,b>0,c>0,
∴f(x)=|x﹣a|+|x+b|+c≥|x﹣a﹣x﹣b|+c=a+b+c,
當且僅當(x﹣a)(x﹣b)≤0時:“=”成立,
故a+b+c=1
(2)證明:3(a2+b2+c2)﹣12
=3(a2+b2+c2)﹣(a+b+c)2
=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac
=(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,
∴a2+b2+c2
【解析】(1)運用絕對值不等式的性質,注意等號成立的條件,即可求得最小值;(2)通過作差法證明即可.
【考點精析】通過靈活運用基本不等式,掌握基本不等式:,(當且僅當
時取到等號);變形公式:
即可以解答此題.
科目:高中數學 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現要設計其底面半徑和上部圓錐的高,若設圓錐的高為
,儲糧倉的體積為
.
(1)求關于
的函數關系式;(圓周率用
表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C對邊分別為a,b,c,且c<a,已知 =﹣2,tanB=2
,b=3.
(1)求a和c的值;
(2)求sin(B﹣C)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形
為直角梯形,
,
.
(1)求與平面
所成角的正弦值;
(2)線段或其延長線上是否存在點
,使平面
平面
?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的方程為,過點
的直線
與拋物線相交于
兩點,分別過點
作拋物線的兩條切線
和
,記
和
相交于點
.
(1)證明:直線和
的斜率之積為定值;
(2)求證:點在一條定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|
>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O為極點,x軸的正半軸為極軸的極坐標系中,過極點作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標方程;
(2)設AB中點為M,求動點M的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com