【題目】已知函數f(x)=x
-ax+(a-1)
,
。
(1)討論函數的單調性;
(2)證明:若,則對任意x
,x
,x
x
,有
。
【答案】(1)見解析(2)見解析
【解析】
分析:(1)根據對數函數定義可知定義域為大于0的數,求出f′(x)討論當a-1=1時導函數大于0,函數單調遞增;當a-1>1時討論函數的增減性;(2)構造函數g(x)=f(x)+x,求出導函數,根據a的取值范圍得到導函數一定大于0,則g(x)為單調遞增函數,則利用當x1>x2>0時有g(x1)-g(x2)>0即可得證.
詳解:
(1)的定義域為
.
.
(i)若即
,則
,故
在
上單調遞增.
(ii)若,而
,故
,則當
時,
;
當及
時,
,
故在
單調遞減,在
,
單調遞增.
(iii)若即
,同理可得
在
單調遞減,在
,
單調遞增.
(2)考慮函數,
則
由于,故
,即
在
單調增加,從而當
時有
,即
,故
,
當時,有
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線的直角坐標方程和直線
的普通方程;
(2)設點,
為曲線
上的動點,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個五位自然數數稱為“跳躍數”,如果同時有
或
(例如13284,40329都是“跳躍數”,而12345,54371,94333都不是“跳躍數”),則由1,2,3,4,5組成沒有重復數字且1,4不相鄰的“跳躍數”共有_____個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的導函數為
,且對任意的實數
都有
(
是自然對數的底數),且
,若關于
的不等式
的解集中恰有唯一一個整數,則實數
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點為(0,1)
(1)求拋物線C的方程;
(2)設直線l2:y=kx+m與拋物線C有唯一公共點P,且與直線l1:y=﹣1相交于點Q,試問,在坐標平面內是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點P是△PMN的頂點,M(﹣2,0),N(2,0),直線PM,PN的斜率之積為﹣ .
(1)求點P的軌跡E的方程;
(2)設四邊形ABCD的頂點都在曲線E上,且AB∥CD,直線AB,CD分別過點(﹣1,0),(1,0),求四邊形ABCD的面積為時,直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(Ⅰ)若直線且曲線
在A處的切線與
在B處的切線相互平行,求a的取值范圍;
(Ⅱ)設在其定義域內有兩個不同的極值點
且
若不等式
恒成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com