如圖2,四邊形為矩形,
⊥平面
,
,作如圖3折疊,折痕
,其中點
分別在線段
上,沿
折疊后點
疊在線段
上的點記為
,并且
⊥
.(1)證明:
⊥平面
;
(2)求三棱錐的體積.
(1)見解析(2)
解析試題分析:(1)要證CF⊥平面MDF,只需證CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即證MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面積S△CDE,對應三棱錐的高MD,計算它的體積VM-CDE.
試題解析:(1)證明:∵PD⊥平面ABCD,PD?平面PCD,
∴平面PCD⊥平面ABCD;
又平面PCD∩平面ABCD=CD,MD?平面ABCD,MD⊥CD,
∴MD⊥平面PCD,CF?平面PCD,∴CF⊥MD;
又CF⊥MF,MD、MF?平面MDF,MD∩MF=M,
∴CF⊥平面MDF;
(2)∵CF⊥平面MDF,∴CF⊥DF,
又易知∠PCD=60°,∴∠CDF=30°,∴CF=CD=
;
∵EF∥DC,∴,即
,∴
,∴
,
,
=
,
∴
考點:空間線面垂直、面面垂直的判定與性質,空間幾何體的體積計算,邏輯推論證能力,運算求解能力
科目:高中數學 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,側棱AA1⊥底面ABCD,AB∥DC,.
(Ⅰ)求證:CD⊥平面ADD1A1;
(Ⅱ)若直線AA1與平面AB1C所成角的正弦值為,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=2,PD=
,M為棱PB的中點.
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com