【題目】選修4-4:坐標系與參數方程.
已知曲線在直角坐標系
下的參數方程為
(
為參數).以
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)直線的極坐標方程是
,射線
與曲線
交于
點,與直線
交于
,求線段
的長.
【答案】(1)ρ2-2ρcosθ-2=0;(2)4.
【解析】試題分析:(1)曲線C的參數方程為(
為參數),消去參數化為:(x-1)2+y2=3,展開利用互化公式即可得出極坐標方程.
(2)射線OT: (
)分別與曲線C,直線l的極坐標方程聯立解出交點坐標即可得出.
試題解析:
(1)消去參數化為:(x-1)2+y2=3,展開為:x2+y2-2x-2=0,
化為極坐標方程:ρ2-2ρcosθ-2=0.
(2)聯立,化為:ρ2-ρ-2=0,ρ>0,解得ρ=2.
射線OT:θ=(ρ>0)與曲線C交于A點
.
聯立, 解得ρ=6,
射線OT:θ=(ρ>0)與直線l交于B
,
∴線段AB的長=6-2=4.
科目:高中數學 來源: 題型:
【題目】在一次抽樣調查中測得樣本的6組數據,得到一個變量關于
的回歸方程模型,其對應的數值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)請用相關系數加以說明
與
之間存在線性相關關系(當
時,說明
與
之間具有線性相關關系);
(2)根據(1)的判斷結果,建立關于
的回歸方程并預測當
時,對應的
值為多少(
精確到
).
附參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:
,
,相關系數
公式為:
.
參考數據:
,
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求
的單調區間;
(2)設,
是曲線
圖象上的兩個相異的點,若直線
的斜率
恒成立,求實數
的取值范圍;
(3)設函數有兩個極值點
,
,且
,若
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的發展,微信越來越成為人們交流的一種方式,某機構對使用微信交流的態度進行調查,隨機調查了50人,他們年齡的頻數分布及對使用微信交流贊成人數如表:
年齡(歲) | ||||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)由以上統計數據填寫下面列聯表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態度有差異;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(2)若對年齡分別在,
的被調查人中各抽取一人進行追蹤調查,求選中的2人中至少有一人贊成使用微信交流的概率.
參考公式: ,其中
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對400名高一學生的一周課外體育鍛煉時間進行調查,結果如下表所示:現采用分層抽樣的方法抽取容量為20的樣本.
(1)其中課外體育鍛煉時間在分鐘內的學生應抽取多少人?
(2)若從(1)中被抽取的學生中隨機抽取2名,求這2名學生課外體育鍛煉時間均在分鐘內的概率.
鍛煉時間(分鐘) | ||||||
人數 | 40 | 60 | 80 | 100 | 80 | 40 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修:坐標系與參數方程選講.
在平面直角坐標系中,曲線
(
為參數,實數
),曲線
(
為參數,實數
). 在以
為極點,
軸的正半軸為極軸的極坐標系中,射線
與
交于
兩點,與
交于
兩點. 當
時,
;當
時,
.
(1)求的值; (2)求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com