【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
的參數方程為
(
,
為參數).以坐標原點
為極點,
軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)當時,求曲線
上的點到直線
的距離的最大值;
(Ⅱ)若曲線上的所有點都在直線
的下方,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域為區間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區間(0,+∞),求a的取值范圍,使f(x)在定義域內是單調減函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1+lnx﹣ ,其中k為常數.
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數,且當x>2時,f(x)>0恒成立,求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若函數g(x)=f(x)﹣2tx在區間[﹣1,5]上是單調函數,求實數t的取值范圍;
(3)若關于x的方程f(x)=x+m有區間(﹣1,2)上有唯一實數根,求實數m的取值范圍(注:相等的實數根算一個).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=ax+ka﹣x(a>0且a≠1)在R上既是奇函數又是增函數,則函數g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公比不為1的等比數列{an}的前5項積為243,且2a3為3a2和a4的等差中項.
(1)求數列{an}的通項公式an;
(2)若數列{bn}滿足bn=bn﹣1log3an+2(n≥2且n∈N*),且b1=1,求數列 的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經市場調查,某商品每噸的價格為x(2<x<14)元時,該商品的月供給量為y1噸,y1=ax﹣16(a≥8);月需求量為y2噸 .當該商品的需求量不小于供給量時,銷售量等于供給量;當該商品的需求量小于供給量時,銷售量等于需求量.該商品的月銷售額f(x)等于月銷售量與價格的乘積.
(1)若a=32,問商品的價格為多少元時,該商品的月銷售額f(x)最大?
(2)記需求量與供給量相等時的價格為均衡價格.若該商品的均衡價格不低于每噸10元,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com