【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=2x(1﹣x).
(1)在如圖所給直角坐標系中畫出函數f(x)的草圖,并直接寫出函數f(x)的零點;
(2)求出函數f(x)的解析式.
【答案】解:(1)當x≥0時,由f(x)=2x(1﹣x)=0得x=0或x=1,
∵f(x)是定義在R上的奇函數,
∴當x<0時,函數的零點為﹣1,
即函數f(x)的零點為0,﹣1,1.
(2)若x<0,則﹣x>0,
∵x≥0時,f(x)=2x(1﹣x).
∴當﹣x>0時,f(﹣x)=﹣2x(1+x).
∵f(x)是定義在R上的奇函數,
∴f(﹣x)=﹣2x(1+x)=﹣f(x),
即f(x)=2x(1+x),x<0.
即f(x)=.
【解析】(1)根據函數奇偶性的性質以及函數零點的定義進行求解即可.
(2)根據函數奇偶性的性質進行轉化求解即可.
【考點精析】本題主要考查了函數奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點,若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時,有PC⊥BD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】凸函數的性質定理為:如果函數f(x)在區間D上是凸函數,則對于區間D內的任意x1 , x2 , …,xn , 有 ≤f(
),已知函數y=sinx在區間(0,π)上是凸函數,則在△ABC中,sinA+sinB+sinC的最大值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某問答游戲的規則是:共5道選擇題,基礎分為50分,每答錯一道題扣10分,答對不扣分.試分別用列表法、圖象法、解析法表示一個參與者的得分y與答錯題目道數x(x∈{0,1,2,3,4,5})之間的函數關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數,并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,設函數
,且
的圖象過點
和點
.
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移
(
)個單位后得到函數
的圖象.若
的圖象上各最高點到點
的距離的最小值為1,求
的單調增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax+b(a,b∈R),
(1)若函數f(x)在區間[﹣1,1]上不單調,求實數a的取值范圍;
(2)記M(a,b)是|f(x)|在區間[﹣1,1]上的最大值,證明:當|a|≥2時,M(a,b)≥2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線的準線為
,取過焦點
且平行于
軸的直線與拋物線交于不同的兩點
,過
作圓心為
的圓,使拋物線上其余點均在圓外,且
.
(Ⅰ)求拋物線和圓
的方程;
(Ⅱ)過點作直線
與拋物線
和圓
依次交于
,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com