精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱錐PABC中,PAAB,PA1,PC3,BC2sinPCA,E,F,G分別為線段的PC,PB,AB中點,且BE

1)求證:ABBC;

2)若M為線段BC上一點,求三棱錐MEFG的體積.

【答案】1)見解析;(2

【解析】

1)先證明PA⊥平面ABC,再證明BCBP,即可得BC⊥平面PAB,即可得證;

2)由BC∥平面EFG可得VMEFGVBEFGVEBFG,證明EF⊥平面BFG后求出長度即可得解.

(1)證明:∵PA1PC3,,∴PAAC

PAAB,∴PA⊥平面ABC,

PABC,∵EPC中點,且,∴BCBP,∴BC⊥平面PAB,∴ABBC

2)∵E,F為中點,∴BCEF,且EF1,由BC平面EFG,∴BC∥平面EFG,

MBC,∴VMEFGVBEFGVEBFG,易知EF⊥平面BFG,FGPA

, ,∴SBFG,

∴三棱錐MEFG的體積為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數fx)=lnx+ax21).

1)討論函數fx)的單調性;

2)當ax[1,+∞)時,證明:fxx1ex

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是函數的兩個極值點,其中.

1)求的取值范圍;

2)若為自然對數的底數),的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

①當時,函數______零點;

②若函數的值域為,則實數的取值范圍是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線的參數方程為t為參數)。以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和 的直角坐標方程;

2)若,交于A,B兩點,P點極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB//CD,∠ABC=,BC=CD=CE=1,EC⊥平面ABCDEFAC,P是線段EF上的動點

1)求證:平面BCE⊥平面ACEF;

2)求平面PAB與平面BCE所成銳二面角的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構成的三角形的面積為;

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(點在第二象限),是橢圓上位于直線兩側的動點,若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市推行“共享汽車”服務,租用汽車按行駛里程加用車時間收費,標準是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時大約1小時”,并將自己近50天往返開車的花費時間情況統計如下

時間(分鐘)

[15,25

[25,35

[35,45

[4555

[55,65

次數ξ

8

18

14

8

2

將老李統計的各時間段頻率視為相應概率,假定往返的路況不變,而且每次路上開車花費時間視為用車時間.

1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);

2)小劉認為只要上下班開車總用時不超過45分鐘,租用“共享汽車”為他該日的“最優選擇”,小劉擬租用該車上下班2天,設其中有ξ天為“最優選擇”,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中為實數.

1)若上是單調減函數,且上有最小值,求的取值范圍;

2)若上是單調增函數,試求的零點個數,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视