【題目】已知集合M是滿足下列性質的函數的全體:在定義域
內存在
,使函數
成立;
(1)請給出一個的值,使函數
(2)函數是否是集合M中的元素?若是,請求出所有
組成的集合;若不是,請說明理由;
(3)設函數,求實數a的取值范圍.
【答案】(1)=2;(2)是,
(3)
或
【解析】
(1)利用列不等式,由此求得
的一個取值.
(2)假設存在符合題意,驗證
,由此判斷出
的所有可能取值.
(3)利用列不等式,對
分成
三種情況進行分類討論,由此求得
的取值范圍.
(1)當時,依題意在定義域
內存在
,使函數
成立,而
,即
,即
,故可取
,此時
.
(2)假設存在符合題意,而
,即
,即
,化簡得
,解得
.所以函數
是集合M中的元素,且
.
(3)由于函數,
,由
,得
①,
.
當時,①成立.
當時,①的左邊為負數,右邊為正數,即①成立.
當時,①可化為
,也即存在
,使
②成立.
當時,顯然存在
,使②成立;
當時,②化為
,顯然存在
,使②成立.
當,即
時,不等式
對應的一元二次方程
,開口向下,且判別式
,由于
,所以
,所以不存在
,使②成立.
綜上所述,實數的取值范圍是
或
.
科目:高中數學 來源: 題型:
【題目】2018年雙11當天,某購物平臺的銷售業績高達2135億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系,現從評價系統中選出200次成功交易,并對其評價進行統計,對商品的好評率為0.9,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為140次.
(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務好評有關?
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 140 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全好評的次數為X.
①求隨機變量X的分布列;
②求X的數學期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】絕對值|x﹣1|的幾何意義是數軸上的點x與點1之間的距離,那么對于實數a,b,的幾何意義即為點x與點a、點b的距離之和.
(1)直接寫出與
的最小值,并寫出取到最小值時x滿足的條件;
(2)設a1≤a2≤…≤an是給定的n個實數,記S=.試猜想:若n為奇數,則當x∈ 時S取到最小值;若n為偶數,則當x∈ 時,S取到最小值;(直接寫出結果即可)
(3)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐B-AEDC中,平面AEDC⊥平面ABC,F為BC的中點,P為BD的中點,且AE//DC,∠ACD=∠BAC=90°,DC=AC=AB=2AE
(1)證明:EP⊥平面BCD;
(2)若DC=2,求三棱錐E-BDF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線,
,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在正方形中,
是
的中點,點
在線段
上,且
.若將
分別沿
折起,使
兩點重合于點
,如圖2.
圖1 圖2
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com