【題目】已知雙曲線具有性質:若
、
是雙曲線左、右頂點,
為雙曲線上一點,且
在第一象限.記直線
,
的斜率分別為
,
,那么
與
之積是與點
位置無關的定值.
(1)試對橢圓,類比寫出類似的性質(不改變原有命題的字母次序),并加以證明.
(2)若橢圓的左焦點
,右準線為
,在(1)的條件下,當
取得最小值時,求
的垂心
到
軸的距離.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為,直線l的參數方程為
(t為參數),直線l與圓C交于A,B兩點,P是圓C上不同于A,B的任意一點.
(1)求圓心的極坐標;
(2)求△PAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,梯形中,
∥
,
,
,
,將
沿對角線
折起.設折起后點
的位置為
,并且平面
平面
.給出下面四個命題:
①;②三棱錐
的體積為
;③
平面
;
④平面平面
.其中正確命題的序號是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次人才招聘會上,有一家公司的招聘員告訴你,“我們公司的收入水平很高”“去年,在50名員工中,最高年收入達到了200萬,員工年收人的平均數是10萬",而你的預期是獲得9萬元年薪.
(1)你是否能夠判斷年薪為9萬元的員工在這家公司算高收入者?
(2)如果招聘員繼續告訴你,“員工年收入的變化范圍是從3萬到200萬”,這個信息是否足以使你作出自己是否受聘的決定?為什么?
(3)如果招聘員繼續給你提供了如下信息,員工收人的第一四分位數為4.5萬,第三四分位數為9.5萬,你又該如何使用這條信息來作出是否受聘的決定?
(4)根據(3)中招聘員提供的信息,你能估計出這家公司員工收入的中位數是多少嗎?為什么平均數比估計出的中位數高很多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 為棱PC上一點.
(Ⅰ)若點是PC的中點,證明:B
∥平面PAD;
(Ⅱ) 試確定
的值使得二面角
-BD-P為60°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=3ax2﹣2(a+c)x+c(a>0,a,c∈R)
(1)設a>c>0,若f(x)>c2﹣2c+a對x∈[1,+∞]恒成立,求c的取值范圍;
(2)函數f(x)在區間(0,1)內是否有零點,有幾個零點?為什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
,
//
,
,
為正三角形. 若
,且
與底面
所成角的正切值為
.
(1)證明:平面平面
;
(2)是線段
上一點,記
(
),是否存在實數
,使二面角
的余弦值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖設計一幅矩形宣傳畫,要求畫面面積為4840,畫面上下邊要留8cm空白,左右要留5cm空白,怎樣確定畫面高與寬的尺寸,才能使宣傳畫所用紙張面積最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】蚌埠市某中學高三年級從甲(文)、乙(理)兩個科組各選出名學生參加高校自主招生數學選拔考試,他們取得的成績的莖葉圖如圖所示,其中甲組學生的平均分是
,乙組學生成績的中位數是
.
(1)求和
的值;
(2)計算甲組位學生成績的方差
;
(3)從成績在分以上的學生中隨機抽取兩名學生,求甲組至少有一名學生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com