【題目】某校要從甲、乙兩名同學中選擇一人參加該市組織的數學競賽,已知甲、乙兩名同學最近7次模擬競賽的數學成績(滿分100分)如下:
甲:79,81,83,84,85,90,93;
乙:75,78,82,84,90,92,94.
(1)完成答題卡中的莖葉圖;
(2)分別計算甲、乙兩名同學最近7次模擬競賽成績的平均數與方差,并由此判斷該校應選擇哪位同學參加該市組織的數學競賽.
科目:高中數學 來源: 題型:
【題目】某種子公司對一種新品種的種子的發芽多少與晝夜溫差之間的關系進行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗地每天的晝夜溫差和每塊實驗地里50顆種子的發芽數,得到如下資料:
(1)從上述十組試驗數據來看,是否可以判斷晝夜溫差與發芽數之間具有相關關系?是否具有線性相關關系?
(2)若在一定溫度范圍內,晝夜溫差與發芽數近似滿足相關關系:(其中
).取后五組數據,利用最小二乘法求出線性回歸方程
(精確到0.01);
(3)利用(2)的結論,若發芽數試驗值與預測值差的絕對值不超過3個就認為正常,否則認為不正常.從上述十組試驗中任取三組,至少有兩組正常的概率是多少?
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一點.
(1)求證:平面EBD⊥平面SAC;
(2)設SA=4,AB=2,求點A到平面SBD的距離;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】研究表明某地的山高 (
)與該山的年平均氣溫
(
)具有相關關系,根據所采集的數據得到線性回歸方程
,則下列說法錯誤的是( )
A.年平均氣溫為時該山高估計為
B.該山高為處的年平均氣溫估計為
C.該地的山高與該山的年平均氣溫
的正負相關性與回歸直線的斜率的估計值有關
D.該地的山高與該山的年平均氣溫
成負相關關系
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:過點
,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點的直線與橢圓C交于P、Q兩點,且在直線
上存在點M,使得
為等邊三角形,求直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸長為
.
(1)求的方程;
(2)如圖,經過橢圓左頂點且斜率為
的直線
與
交于
兩點,交
軸于點
,點
為線段
的中點,若點
關于
軸的對稱點為
,過點
作
(
為坐標原點)垂直的直線交直線
于點
,且
面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com