精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙、丙3人站到共有6級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區分站的位置,則不同的站法總數是(

A.90B.120C.210D.216

【答案】C

【解析】

根據題意:分為兩類:第一類,甲、乙、丙各自站在一個臺階上;第二類,有2人站在同一臺階上,剩余1人獨自站在一個臺階上,算出每類的站法數,然后再利用分類計數原理求解.

因為甲、乙、丙3人站到共有6級的臺階上,且每級臺階最多站2人,

所以分為兩類:第一類,甲、乙、丙各自站在一個臺階上,共有:種站法;

第二類,有2人站在同一臺階上,剩余1人獨自站在一個臺階上,共有:種站法;

所以每級臺階最多站2人,同一級臺階上的人不區分站的位置的不同的站法總數是.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校為舉辦甲、乙兩項不同活動,分別設計了相應的活動方案:方案一、方案二.為了解該校學生對活動方案是否支持,對學生進行簡單隨機抽樣,獲得數據如下表:

男生

女生

支持

不支持

支持

不支持

方案一

200

400

300

100

方案二

350

250

150

250

假設所有學生對活動方案是否支持相互獨立.

(Ⅰ)分別估計該校男生支持方案一的概率、該校女生支持方案一的概率;

(Ⅱ)從該校全體男生中隨機抽取2人,全體女生中隨機抽取1人,估計這3人中恰有2人支持方案一的概率;

(Ⅲ)將該校學生支持方案的概率估計值記為,假設該校一年級有500名男生和300名女生,除一年級外其他年級學生支持方案二的概率估計值記為,試比較的大。ńY論不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知焦點為的拋物線上有一動點,過點作拋物線的切線軸于點.

1)判斷線段的中垂線是否過定點,若是求出定點坐標,若不是說明理由;

2)過點的垂線交拋物線于另一點,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】臺球運動已有五、六百年的歷史,參與者用球桿在臺上擊球.若和光線一樣,臺球在球臺上碰到障礙物后也遵從反射定律如圖,有一張長方形球臺ABCD,,現從角落A沿角的方向把球打出去,球經2次碰撞球臺內沿后進入角落C的球袋中,則的值為(

A.B.C.1D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面上一動點A的坐標為.

1)求點A的軌跡E的方程;

2)點B在軌跡E上,且縱坐標為.

i)證明直線AB過定點,并求出定點坐標;

ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點為H,在平面內是否存在定點P,使得為定值?若存在,求出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽粒,古稱角黍,是端午節大家都會品嘗的食品.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_________;若該六面體內有一球,當該球體積最大時,球的表面積是__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人們生活水平的不斷提高,肥胖人數不斷增多.世界衛生組織(WHO)常用身體質量指數(BMI)來衡量人體胖瘦成度以及是否健康,其計算公式是.成人的BMI數值標準為:BMI偏瘦;BMI為正常;BMI為偏胖;BMI為肥胖.某研究機構為了解某快遞公司員工的身體質量指數,研究人員從公司員工體檢數據中,抽取了8名員工(編號1-8)的身高cm)和體重kg)數據,并計算得到他們的BMI(精確到0.1)如下表:

1

2

3

4

5

6

7

8

身高(cm

163

164

165

168

170

172

176

182

體重(kg

54

60

77

72

68

72

55

BMI(近似值)

20.3

22.3

28.3

25.5

23.5

23.7

23.2

16.6

1)現從這8名員工中選取3人進行復檢,記抽取到BMI值為正常員工的人數為,求的分布列及數學期望.

2)研究機構分析發現公司員工的身高cm)和體重kg)之間有較強的線性相關關系,在編號為6的體檢數據丟失之前調查員甲已進行相關的數據分析,并計算得出該組數據的線性回歸方程為,且根據回歸方程預估一名身高為180cm的員工體重為71kg,計算得到的其它數據如下:,.

①求的值及表格中8名員工體重的平均值.

②在數據處理時,調查員乙發現編號為8的員工體重數據有誤,應為63kg,身高數據無誤,請你根據調查員乙更正的數據重新計算線性回歸方程,并據此預估一名身高為180cm的員工的體重.

附:對于一組數據,,,,其回歸直線的斜率和截距的最小二乘法估計分別為: ,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在點處的切線斜率為,其中為自然對數的底數.

(1)求實數的值,并求的單調區間;

(2)證明:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视