精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)=﹣ x2+bln(x+2)在區間[﹣1,2]不單調,則b的取值范圍是(
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)

【答案】D
【解析】解:f′(x)=﹣x+ , 故f(x)在[﹣1,2]上不單調
等價于﹣x+ =0在[﹣1,2]上有解,
由x>﹣1得x+2>0,
原命題成立等價于b=x2+2x在[﹣1,2]上有解,
而y=x2+2x=(x+1)2﹣1在[﹣1,2]遞增,
故﹣1≤y≤8,
故﹣1<b<8,
故選:D.
【考點精析】掌握利用導數研究函數的單調性是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y軸的距離為( )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a為實數,函數f(x)=ex﹣2x+2a,x∈R.
(1)求函數f(x)的極值;
(2)求證:當a>ln2﹣1且x>0時,ex>2x﹣2a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實數a的值;
(Ⅱ)求函數f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則輸出的S=(
A.14
B.30
C.20
D.55

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)求函數f(x)的最小正周期和單調區間;
(2)設銳角△ABC的三個內角A、B、C的對應邊分別是a,b,c,若 , ,f( )=﹣ ,求b.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)經過點(1, ),且離心率等于 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(2,0)作直線PA,PB交橢圓于A,B兩點,且滿足PA⊥PB,試判斷直線AB是否過定點,若過定點求出點坐標,若不過定點請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義域是一切實數的函數y=f(x),其圖象是連續不斷的,且存在常數λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數x都成立,則稱f(x)實數一個“λ一半隨函數”,有下列關于“λ一半隨函數”的結論:①若f(x)為“1一半隨函數”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個“λ一半隨函數;③“ 一半隨函數”至少有一個零點;④f(x)=x2是一個“λ一班隨函數”;其中正確的結論的個數是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系內,已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當a∈( ,3)時,求直線AC的傾斜角α的取值范圍;
(2)當a=2時,求△ABC的BC邊上的高AH所在直線方程l.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视