【題目】已知函數f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實數a的值;
(Ⅱ)求函數f(x)的單調區間.
【答案】解:(Ⅰ)∵f′x)= ﹣
+1, ∴f′(1)=﹣2,
∴2a2﹣a﹣3=0,
∵a>0,
∴a= .
(Ⅱ)∵f′(x)= ,
令f′(x)>0,解得:x> ,x<﹣3(舍),
令f′(x)<0,解得:0<x<
∴f(x)在(0, )遞減,在(
,+∞)遞增
【解析】(1)先求出f′x)= ﹣
+1,得f′(1)=﹣2,從而求出a的值,(2)先求出函數的導數,解不等式從而求出單調區間.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx,則( )
A.f(x)在(0,+∞)上是增函數
B.f(x)在 上是增函數
C.當x∈(0,1)時,f(x)有最小值
D.f(x)在定義域內無極值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數f(x)=x2﹣2x+3,x∈[0,+∞)的值域為[2,+∞);
③設g(x)是定義在區間[a,b]上的連續函數.若g(a)=g(b)>0,則函數g(x)無零點;
④函數 既是奇函數又是減函數.
其中正確的命題有 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣3mx+n(m>0)的兩個零點分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令 ,若函數F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零點,求實數r的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=﹣ x2+bln(x+2)在區間[﹣1,2]不單調,則b的取值范圍是( )
A.(﹣∞,﹣1]
B.[8,+∞)
C.(﹣∞,﹣1]∪[8,+∞)
D.(﹣1,8)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1﹣ 為定義在R上的奇函數.
(1)試判斷函數的單調性,并用定義加以證明;
(2)若關于x的方程f(x)=m在[﹣1,1]上有解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.點M是棱PC的中點
(1)記平面ADM與平面PBC的交線是l,試判斷直線l與BC的位置關系,并加以證明.
(2)若 ,求證PB⊥平面ADM,并求直線PC與平面ADM所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com