【題目】設a,b,c,d均為正數,且a+b=c+d,證明:(1)若ab > cd,則
+
>
+
;(2)
+
>
+
是|a-b| < |c-d|的充要條件
(1)(I)若abcd,則
+
+
(2)(II)+
+
是|a-b|
|c-d|的充要條件
【答案】
(1)
見解答
(2)
見解答
【解析】(1)因為+
)2=a+b+2
,(
+
)2=c+d+2
由題設a+b=c+d,abcd,得(
+
)2
(
+
)2
因此+
+
。
(II)(i)若|a-b||c-d|,則(a-b)2
(c-d)2,即(a+b)2-4ab
(c+d)2-4cd,
因為a+b=c+d,所以abcd
由(I)得+
+
(ii)若+
+
, 則(
+
)2
(
+
)2,即a+b+2
c+d+2
,因為a+b=c+d,
所以abcd
于是(a-b)2=(a+b)2-4ab(c+d)2-4cd=(c-d)2
因此|a-b||c-d|,綜上所述,
+
+
是|a-b|
|c-d|的充要條件
【考點精析】關于本題考查的不等式的證明,需要了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數單調性法,數學歸納法等才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,左、右焦點分別為圓F1、F2 , M是C上一點,|MF1|=2,且|
||
|=2
.
(1)求橢圓C的方程;
(2)當過點P(4,1)的動直線l與橢圓C相交于不同兩點A、B時,線段AB上取點Q,且Q滿足| ||
|=|
||
|,證明點Q總在某定直線上,并求出該定直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經過點(﹣4,2ln2)
(1)討論函數f(x)的單調性
(2)若不等式 恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖O是等腰三角形ABC內一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4.過點E,F的平面
與此長方體的面相交,交線圍成一個正方形。
(1)(I)在圖中畫出這個正方形(不必說明畫法與理由);
(2)(II)求平面 把該長方體分成的兩部分體積的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A,B兩地區分別隨機調查了20個用戶,得到用戶對產品的滿意度平分如下:
A地區:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地區:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)(I)根據兩組數據完成兩地區用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區滿意度評分的平均值及分散程度(不要求計算出具體值,得出結論即可)
(2)(II)根據用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
|
|
|
|
|
|
|
|
記時間C:“A地區用戶的滿意度等級高于B地區用戶的滿意度等級”,假設兩地區用戶的評價結果相互獨立。根據所給數據,以事件發生的頻率作為相應事件發生的概率,求C的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com