精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

1)設θ[0π],且fθ1,求θ的值;

2)在ABC中,AB1fC1,且ABC的面積為,求sinA+sinB的值.

【答案】121

【解析】

1)化簡得,轉化條件得,即可得解;

2)由(1)知,由面積可得,由余弦定理得a2+b27,聯立方程可求得,再利用正弦定理即可得解.

1

fθ,∴,

,

θ[0,π],∴(θ)∈[,],∴θ

2)由fC1,C∈(0,π),由(1)可得:C.由△ABC的面積為,∴absin,∴

由余弦定理可得:1a2+b22abcos,可得:a2+b27,

聯立解得:a2,b;或b2,a

sinA+sinBa+b)=1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為(其中α為參數),曲線C2:(x﹣1)2+y2=1,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

(1)求曲線C1的普通方程和曲線C2的極坐標方程;

(2)若射線θ=(ρ>0)與曲線C1,C2分別交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知ABC中,角A,B,C所對的邊分別為a,b,c,若(2bccosAacosC

1)求角A;

2)若ABC的外接圓面積為π,求ABC的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數gx)=bx1),其中a≠0,b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調區間;

2)已知函數fx)的曲線與函數gx)的曲線有兩個交點,設兩個交點的橫坐標分別為x1,x2,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型企業生產的某批產品細分為個等級,為了了解這批產品的等級分布情況,從倉庫存放的件產品中隨機抽取件進行檢測、分類和統計,并依據以下規則對產品進行打分:級或級產品打分;級或級產品打分;級、級、級或級產品打分;其余產品打.現在有如下檢測統計表:

等級

1

2

3

4

5

6

7

8

9

10

頻數

10

90

100

200

200

100

100

100

70

30

規定:打分不低于分的為優良級.

1)①試估計該企業庫存的件產品為優良級的概率;

②請估計該企業庫存的件產品的平均得分.

2)從該企業庫存的件產品中隨機抽取件,請估計這件產品的打分之和為分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知λ,μ為常數,且為正整數,λ≠1,無窮數列{an}的各項均為正整數,其前n項和為Sn,對任意的正整數n,Sn=λanμ.記數列{an}中任意兩不同項的和構成的集合為A

1)證明:無窮數列{an}為等比數列,并求λ的值;

2)若2015∈A,求μ的值;

3)對任意的n∈N*,記集合Bn={x|3μ2n1x3μ2nx∈A}中元素的個數為bn,求數列{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中,

1)若,且的極大值點,求的取值范圍;

2)當,時,方程有唯一實數根,求正數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2022年北京冬季奧運會即第24屆冬季奧林匹克運動會,將在202224220日在北京和張家口聯合舉行.某研究機構為了解大學生對冰壺運動的興趣,隨機從某大學學生中抽取了120人進行調查,經統計男生與女生的人數之比為1113,男生中有30人表示對冰壺運動有興趣,女生中有15人表示對冰壺運動沒有興趣.

1)完成2×2列聯表,并回答能否有99%的把握認為對冰壺是否有興趣與性別有關?

有興趣

沒有興趣

合計

30

15

合計

120

2)若將頻率視為概率,現再從該校全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰壺有興趣的人數為X,若每次抽取的結果是相互獨立的,求X的分布列,期望和方差.

附:參考公式,其中na+b+c+d.

臨界值表:

PK2K0

0.150

0.100

0.050

0.025

0.010

K0

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视