精英家教網 > 高中數學 > 題目詳情
(本小題滿分16分)
已知函數,,.
(1)當時,若函數在區間上是單調增函數,試求的取值范圍;
(2)當時,直接寫出(不需給出演算步驟)函數 ()的單調增區間;
(3)如果存在實數,使函數,)在
 處取得最小值,試求實數的最大值.
(1)(2)時,增區間,時,減區間 (3)

試題分析:(1)函數在區間上是單調增函數
(2)當時,上是增函數;
時,上是增函數.
(3)
根據題意,在區間上恒成立,
成立
整理得:,
 ①
時,不等式①恒成立;
時,不等式①可化為   ②
,
根據題設條件,的圖象是開口向下的拋物線,故它在閉區間上的最小值必在區間端點取得,又,所以不等式②恒成立的條件是
,變量分離得:,③
由條件,存在實數使得③有解,所以,
,整理得,解得:
,所以,即實數的最大值是.
點評:本題第三問難度較大,對于學生沒有明顯的區分度
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知函數的圖象是連續不斷的曲線,且有如下的對應值表

1
2
3
4
5
6

124.4
35
-74
14.5
-56.7
-123.6
  則函數在區間[1,6]上的零點至少有(   )
A、2個            B、3個            C、4個           D、5個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)設函數.
(1)當時,求的極值;
(2)當時,求的單調區間;
(3)若對任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分) 已知函數
(Ⅰ)當時,求函數的單調區間;
(Ⅱ)當時,函數圖象上的點都在所表示的平面區域內,求實數a的取值范圍.
(Ⅲ)求證:(其中,e是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求的極值;
(2)當時,求的值域;
(3)設,函數,若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若曲線在點處與直線相切,則           

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)設函數
(Ⅰ)若在定義域內存在,而使得不等式能成立,求實數的最小值;
(Ⅱ)若函數在區間上恰有兩個不同的零點,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數.
(1)當時,求證:函數上單調遞增;
(2)若函數有三個零點,求的值;
(3)若存在,使得,試求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數,其中.
(Ⅰ)若的極值點,求的值;
(Ⅱ)求的單調區間;
(Ⅲ)若上的最大值是,求的取值范圍 .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视