【題目】已知向量 =(cosα,﹣1),
=(2,sinα),其中
,且
.
(1)求cos2α的值;
(2)若sin(α﹣β)= ,且
,求角β.
【答案】
(1)解:∵向量 =(cosα,﹣1),
=(2,sinα),其中
,且
.
∴ =2cosα﹣sinα=0,
∴sin2α+cos2α=5cos2α=1,∴cos2α= ,
∴cos2α=2cos2α﹣1=﹣ .
(2)解:∵cos2α= ,
,∴cosα=
,sinα=
=
,
∵sin(α﹣β)= ,且
,∴sinαcosβ﹣cosαsinβ=
,
∴2cosβ﹣sinβ= ,∴sinβ=2cos
,∴sin2β+cos2β=5cos2β﹣2
﹣
=0,解得cosβ=
或cosβ=﹣
(舍),
∵ ,∴β=
【解析】1、由向量垂直的坐標表示可求得cos2α= 再根據二倍角公式得到結果。
2、根據同角三角函數的基本關系可得sinα的值,再由兩角和差的正弦公式得到sinβ=2cos β 的關系,代入sin2β+cos2β=1解得cosβ=
,再由 β的范圍可得 β=
。
【考點精析】根據題目的已知條件,利用數量積判斷兩個平面向量的垂直關系的相關知識可以得到問題的答案,需要掌握若平面的法向量為
,平面
的法向量為
,要證
,只需證
,即證
;即:兩平面垂直
兩平面的法向量垂直.
科目:高中數學 來源: 題型:
【題目】解答題
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7 .
(Ⅱ)2017年5月,北京召開“一帶一路”國際合作高峰論壇.組委會將甲、乙、丙、丁、戊五名志愿者分配到翻譯、導游、禮儀、司機四個不同的崗位,每個崗位至少有一人參加,且五人均能勝任這四個崗位.
(i)若每人不準兼職,則不同的分配方案有幾種?
(ii)若甲乙被抽調去別的地方,剩下三人要求每人必兼兩職,則不同的分配方案有幾種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx﹣cos2x﹣
.
(Ⅰ)求函數f(x)的對稱軸方程;
(Ⅱ)將函數f(x)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移 個單位,得到函數g(x)的圖象.若a,b,c分別是△ABC三個內角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某樂隊參加一戶外音樂節,準備從3首原創新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創新曲的概率;
(2)假定演唱一首原創新曲觀眾與樂隊的互動指數為a(a為常數),演唱一首經典歌曲觀眾與樂隊的互動指數為2a,求觀眾與樂隊的互動指數之和X的概率分布及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}中,a1 , a3 , a7成等比數列,且a2n=2an﹣1,等比數列{bn}滿足bn+bn+1= .
(1)求數列{an},{bn}的通項公式;
(2)令cn=anbn , 求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點P(0,1)且互相垂直的兩條直線分別與
圓O:x2+y2=4交于點A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點C,D.
(1)若 ,求CD的長;
(2)若CD中點為E,求△ABE面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com