精英家教網 > 高中數學 > 題目詳情

【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.

(1)a=3,求(RP)∩Q;

(2)PQQ,求實數a的取值范圍.

【答案】(1) {x|-2≤x<4};(2) (-∞,2]

【解析】

(1)解一元二次不等式得集合Q,再根據補集與交集定義求結果,(2)先根據條件得集合之間包含關系,再根據Q是否為空集分類討論,最后求并集.

(1)因為a=3,所以P={x|4≤x≤7},

RP={x|x<4x>7}.

Q={x|x2-3x-10≤0}={x|-2≤x≤5},所以(RP)∩Q={x|x<4x>7}∩{x|-2≤x≤5}={x|-2≤x<4}.

(2)P時,由PQQPQ,

所以解得0≤a≤2;

P,即2a+1<a+1時,有PQ,得a<0.

綜上,實數a的取值范圍是(-∞,2].

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數, 對于給定的非零實數,總存在非零常數,使得定義域內的任意實數,都有恒成立,此時的假周期,函數上的級假周期函數,若函數是定義在區間內的3級假周期且,當 函數,若, 使成立,則實數的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校有、、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預測如下.

甲說:“同時獲獎.”

乙說:“、不可能同時獲獎.”

丙說:“獲獎.”

丁說:“至少一件獲獎”

如果以上四位同學中有且只有兩位同學的預測是正確的,則獲獎的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,是雙曲線C的左,右焦點,O是坐標原點C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在點處的切線.

)求的解析式.

)求證:

)設,其中.若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2bxc(a,bcR)滿足:對任意實數x,都有f(x)≥x,且當x(1,3)時,有f(x)≤ (x+2)2成立.

(1)證明:f(2)=2;

(2)f(-2)=0,求f(x)的表達式;

(3)g(x)=f(x)-x,x[0,+∞),若g(x)圖象上的點都位于直線y的上方,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解關于x的不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.

(I)證明:CE∥平面PAB;

(II)求直線CE與平面PBC所成角的正弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,,其中,為自然對數的底數

1討論的單調性;

2證明:當時,

3確定的所有可能取值,使得區間內恒成立

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视