【題目】已知某射擊運動員,每次擊中目標的概率都是0.8.現采用隨機模擬的方法估計該運動員射擊4次至少擊中3次的概率:先由計算器算出0到9之間取整數值的隨機數,指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4次,故以每4個隨機數為一組,代表射擊4次的結果.經隨機模擬產生了如下20組隨機數:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據此估計,該射擊運動員射擊4次至少擊中3次的概率為_____.
科目:高中數學 來源: 題型:
【題目】農科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數據如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數與方差,并由此判斷甲、乙兩種麥苗的長勢情況.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業員工500人參加“學雷鋒”活動,按年齡共分六組,得頻率分布直方圖如下:
(1)現在要從年齡較小的第1、2、3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的各抽取多少人?
(2)在第(1)問的前提下,從這6人中隨機抽取2人參加社區活動,求至少有1人年齡在第3組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】街道旁邊有一游戲:在鋪滿邊長為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規則如下:每擲一次交5角錢,若小圓板壓在正方形的邊上,可重擲一次;若擲在正方形內,須再交5角錢可玩一次;若擲在或壓在塑料板的頂點上,可獲得一元錢,試問:
(1)小圓板壓在塑料板的邊上的概率是多少?
(2)小圓板壓在塑料板頂點上的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l經過拋物線y2=6x的焦點F,且與拋物線相交于A,B兩點.
(1)若直線l的傾斜角為60°,求|AB|的值;
(2)若|AB|=9,求線段AB的中點M到準線的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+ax在點(t,f(t))處的切線方程為y=3x+1
(1)求a的值;
(2)已知k≤2,當x>1時,f(x)>k(1﹣ )+2x﹣1恒成立,求實數k的取值范圍;
(3)對于在(0,1)中的任意一個常數b,是否存在正數x0 , 使得e +
x02<1?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),圓C的參數方程為
(θ為常數).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左焦點為
,離心率為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設為坐標原點,
為直線
上一點,過
作
的垂線交橢圓于
,
.當四邊形
是平行四邊形時,求四邊形
的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創業,在一個開學季內,每售出盒該產品獲利潤
元;未售出的產品,每盒虧損
元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示。該同學為這個開學季購進了
盒該產品,以
(單位:盒,
)表示這個開學季內的市場需求量,
(單位:元)表示這個開學季內經銷該產品的利潤。
(1)求市場需求量在[100,120]的概率;
(2)根據直方圖估計這個開學季內市場需求量的中位數;
(3)將表示為
的函數,并根據直方圖估計利潤不少于
元的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com